C-triada.ru

Строительный журнал
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ротационные компрессоры принцип работы

Ротационные компрессоры принцип работы

Согласно классификации (рис. 1) ротационные компрессоры бывают с катящимся ротором, с вращающимся ротором (пластинчатые), спиральные и роторно-поршневые.

3.1 Ротационный компрессор с катящимся ротором

Работа компрессора с катящимся ротором состоит в следующем. В положении катящегося ротора (рис. 7, а) цилиндр имеет одну полость, заполненную холодильным агентом.

Рисунок 7 – Принцип работы ротационного компрессора

При вращении эксцентрикового вала компрессора объем холодильного агента в серповидном пространстве уменьшается
(рис. 7, б), холодильный агент сжимается, повышаются его температура и давление.

При дальнейшем перемещении ротора (рис. 7, в) давление холодильного агента в нагнетательной полости повышается, открывается нагнетательный клапан и пары холодильного агента начинают поступать в конденсатор. Одновременно со сжатием происходит заполнение всасывающей полости компрессора паром. Всасывающий клапан в компрессоре отсутствует, поскольку ротор, перемещаясь по поверхности цилиндра, перекрывает всасывающее отверстие.

Последующее движение ротора (рис. 7, г) завершает процесс сжатия, холодильный агент поступает в полость всасывания.

Сравнительно с поршневыми компрессорами герметичные ротационные компрессоры имеют ряд преимуществ:

ü они имеют меньшие габариты и массу;

ü в них отсутствует всасывающий клапан, что повышает надежность компрессора;

ü компрессор имеет хорошую уравновешенность, поскольку нет линейного перемещения поршня;

ü небольшое количество движущихся частей снижает износ, повышает надежность, упрощает техническое обслуживание.

Эксплуатационные качества компрессора заключены в особенностях его конструкции. Серповидные объемы компрессора образованы, с одной стороны, контактом ротора с поверхностью разделительной лопасти, с другой – контактом ротора с поверхностью цилиндра. Геометрически этот контакт происходит по линии, разделяющей полости нагнетания и всасывания (при давлении кипения и конденсации).

Контакт ротора и цилиндра должен быть таким, чтобы предотвратить перетекание холодильного агента из полости нагнетания в полость всасывания. Это возможно при качественной обработке поверхности ротора и цилиндра, исключающей любые зазоры между ними. Именно в этом заключается одна из эксплуатационных особенностей компрессора.

При загрязнении конденсатора холодильной машины уменьшается площадь поверхности теплообмена конденсатора и ротор компрессора нагревается, переходя порог, ограничивающий величину его теплового расширения.

Следствием этого могут быть царапины на поверхности ротора и цилиндра, в худшем случае может наблюдаться «заклинивание» ротора, т. е. остановка его вращения.

Для торгового холодильного оборудования и системы кондиционирования воздуха герметичные ротационные компрессоры выпускаются холодопроизводительностью от 0,3 до 1,3 кВт.

3.2 Ротационный компрессор с вращающимся ротором

В компрессоре с вращающимся ротором (пластинчатом) эксцентрично расположенный в цилиндре ротор вращается вокруг своей оси (рис. 8). В роторе сделаны радиальные или наклонные прорези, в которых размещены скользящие (во время вращения ротора) пластины, прижимаемые к поверхности цилиндра при вращении ротора действием центробежной силы. Благодаря наличию пластин обеспечиваются всасывание и сжатие пара. Эти компрессоры характеризуются легкостью пуска, так как пластины занимают рабочее положение лишь после достижения ротором определенной частоты вращения.

Рисунок 8 – Схема компрессора с вращающимся ротором

1 – ротор; 2 – пластины; 3 – водяная рубашка; 4 — корпус

При одинаковых размерах цилиндра и частоте вращения объемная производительность компрессоров с вращающимся ротором более чем в 2 раза выше объемной производительности компрессоров с катящимся ротором.

Пластинчатые ротационные компрессоры удобны, когда требуется перемещать большие объемы пара при умеренных отношениях давлений нагнетания и всасывания. Нередко их используют в качестве поджимающих компрессоров в низкотемпературных установках. Ротационные компрессоры надежны в эксплуатации и просты в обслуживании вследствие небольшого числа движущихся частей, отсутствия всасывающих клапанов, более спокойной работы при влажном ходе.

4 СПИРАЛЬНЫЕ КОМПРЕССОРЫ

Концепция создания холодильного компрессора спирального типа запатентована в 1905 г. французским инженером Леоном Креусом (Leon Creux). Однако в силу высоких технологических требований к изготовлению компрессора спиральные компрессоры стали создаваться лишь при внедрении в металлообработку станков с числовым программным управлением.

Спиральный компрессор состоит из двух спиралей – неподвижной (слева) и подвижной (рис. 9).

Одна из спиралей, связанная с эксцентриковым валом, совершает плоскопараллельное орбитальное движение. Вторая спираль закреплена неподвижно относительно корпуса компрессора. В процессе работы места контакта подвижной спирали перемещаются по профилю неподвижной спирали против часовой стрелки. Образующиеся при этом замкнутые серповидные полости концентрически перемещаются от периферии к центру.

Рисунок 9 – Рабочие органы спиральных компрессоров

В начальный момент (рис. 10, а), когда полость еще не замкнута, в нее свободно входит всасываемый пар. В дальнейшем пар перемещается к центру (рис. 10, б, в), испытывая повышение давления и температуры из-за уменьшения объема полости, и в конце процесса сжатия (рис. 10, г) через нагнетательное отверстие в центре выводится из компрессора.

Рисунок 10 – Принцип работы спирального компрессора

Количество движущихся частей спирального компрессора сравнительно с поршневым компрессором снижено на 80%.

Движущаяся спираль совершает плавное движение, так как она хорошо сбалансирована. Поэтому движение потока на всасывании и нагнетании имеет непрерывный характер, что обеспечивает практически бесшумную работу компрессора. Он в 8 раз «тише», чем поршневой аналог.

Читать еще:  Какой компрессор нужен для краскопульта

Спиральный компрессор не боится «влажного хода», а равным образом и механических примесей. Пуск компрессора происходит без нагрузки, поэтому не требует специального вспомогательного пускового устройства.

Спиральные компрессоры имеют наименьший процент отказов по сравнению с компрессорами любых других типов, в силу чего их по праву считают «вечными».

В целом достоинства спиральных компрессоров перед герметичными или бессальниковыми поршневыми аналогами можно отразить в виде перечня следующих качеств:

ü высокая надежность и повышенный срок службы благодаря небольшому количеству деталей, участвующих в процессе сжатия хладагента;

ü крайне низкий уровень шума вследствие отсутствия клапанов и возвратно поступательного движения деталей;

ü крайне малая вибрация вследствие плавного, непрерывного сжатия;

ü очень высокий коэффициент подачи из-за отсутствия «мертвого пространства»;

ü стабильность работы компрессора при работе «влажным ходом» и попадании в зону сжатия механических примесей;

ü малый пусковой момент и пусковые токи. Для однофазных моделей нет необходимости в пусковом оборудовании;

ü компактность и малая масса.

Спиральные компрессоры используются в холодильных машинах малой и средней холодопроизводительности. Они могут быть в герметичном исполнении, бессальниковыми и сальниковыми.

Стоимость спиральных компрессоров сопоставима со стоимостью поршневых компрессоров.

Относительным недостатком компрессора является необходимость его изготовления на высокоточных станках с ЧПУ, поскольку спиральный компрессор – это техническая конструкция очень высокого технологического уровня и организации производства.

5 ВИНТОВЫЕ КОМПРЕССОРЫ

Винтовые компрессоры – компрессоры объемного типа, в которых сжатие холодильного агента осуществляется за счет уменьшения замкнутого объема рабочей полости между ведущим и ведомым винтами и корпусом компрессора (рис. 11).

Пар в полости всасывания движется в осевом и радиальном направлениях (рис. 12). Сжатие пара продолжается до тех пор, пока полость между выступом и впадиной не достигнет нагнетательного окна в цилиндре.

Рисунок 11 – Рабочие органы винтового компрессора

1 – ведущий винт; 2 – ведомый винт; 3 – синхронизирующая передача

Рисунок 12 – Принцип работы винтового компрессора

Общий вид винтового компрессора в сборе представлен на рис. 13.

Рисунок 13 –Винтовой холодильный компрессор

1 – камера всасывания; 2 – корпус; 3 – задняя крышка; 4 – ведомый ротор;

5 – ведущий ротор; 6, 7 – подшипники роторов компрессора

К достоинствам этого типа компрессора относят возможность плавного регулирования холодопроизводительности, возможность работы практически на любом холодильном агенте при высокой степени сжатия и в широком температурном диапазоне кипения, прежде всего низкотемпературном диапазоне кипения, и, соответственно, при низкой температуре воздуха в охлаждаемом объеме.

Недостатком компрессора является необходимость создания системы смазки роторов, которая ко всему прочему обеспечивает охлаждение роторов, предотвращает перегрев компрессора, уплотняет рабочие зазоры между роторами. Однако применение масляного охлаждения роторов порождает необходимость применения надежных и эффективных систем отделения масла от холодильного агента (маслоотделителей), поскольку при работе компрессора масло в него впрыскивается в большом количестве. При отсутствии маслоотделителя масло может быть унесено в конденсатор.

Все это недостатки, несмотря на очевидные достоинства компрессора, ограничивают его применение в торговом холодильном оборудовании.

Компрессоры подобного типа применяют в основном в холодильных машинах большой холодопроизводительности.

6 ЦЕНТРОБЕЖНЫЕ КОМПРЕССОРЫ

Компрессоры этого типа используют для достижения большой холодопроизводительности в установках химической промышленности или системах кондиционирования зданий и зрелищных сооружений.

Центробежные компрессоры конструктивно выполняются из сборки роторов, насаженных на один вал (рис. 14). Каждый ротор помещается в отдельной полости, выполняя функцию отдельной ступени сжатия.

Холодильный агент последовательно переталкивается из одной полости в другую, С→ с возрастающим давлением, равным на выходе давлению конденсации.

Парообразный холодильный агент, сжимаемый в компрессоре, практически не содержит масла. Отсутствие масла на внутренних поверхностях конденсатора и испарителя улучшает процесс теплопередачи в теплообменных аппаратах.

Рисунок 14 – Устройство центробежного компрессора

1 – рабочее колесо; 2 – диффузор; 3 – всасывающий патрубок;
4 – нагнетательный патрубок; С, D, E, F, G – направляющие аппараты;

I. II. III. IV. V – ступени сжатия холодильного агента

Центробежные компрессоры являются уравновешенными, однако они предназначены для работы при большой частоте вращения ротора (от 6 000 до 25 000 об/мин).

Данный тип компрессоров эффективен в холодильных установках большой холодопроизводительности, от 900 до 10 000 кВт.

Как работает роторный компрессор

Классификация и принцип работы роторного компрессора

В роторных компрессорах сжатие воздуха осуществляется за счёт уменьшения объёма рабочей зоны. Этот тип компрессоров подразделяется на:

  • ротационно-пластинчатые (одновальные)
  • с качающимся ротором (одновальные)
  • жидкостно-кольцевые (одновальные)
  • двухроторные нагнетатели типа Руте (двухвальные)
  • витнтовые (двухвальные и трёхвальные)

Также роторные компрессоры по характеру сжатия воздуха можно отнести к трём группам:

  • воздух сжимается за счёт непрерывного изменения геометрического объёма полостей сжатия (ротационно-пластинчатые).
  • воздух сжимается в результате обратного течения воздуха из нагнетательного трубопровода в камеру сжатия компрессора в момент её соединения с нагнетательным трубопроводом. Перенос воздуха осуществяется при вращении роторов из всасывающего трубопровода в нагнетательный.
  • воздух сжимается с использованием обоих принципов — частично происходит сжатие за счёт изменения геометрического объёма камеры сжатия и сжатие до заданного давления обратным потоком газа их нагнетательной полости.
Читать еще:  Как почистить медный крестик в домашних условиях

По кинематическо схеме роторные компрессоры делятся на однороторные (ротационно-пластинчатые, с качающимся ротором и жидкостно-кольцевые) и многороторные (винтовые).

Компрессор с качающимся ротором состоит из цилиндрического корпуса, в котором эксцентрично расположен цилиндрический ротор, жестко соединенный с шибером, размещенным в пазу цилиндра. Уплотнение шибера достигается полуцилиндрическими направляющими, с помощью которых создается возможность поступательного движения шибера. В цилиндре ротора расположен вал с эксцентриками, которые соприкасаются с внутренней поверхностью цилиндра ротора через шарикоподшипники. При вращении вала ротор совершает планетарное движение относительно оси вала, проходя около стенки цилиндра с небольшим зазором. Шибер совершает качательно-поступательное движение в направляющих, поворачивая их в гнездах.

Для избежания перетечки воздуха из нагнетательной полости во всасывающую, когда шибер полностью входит в паз цилиндра, компрессор снабжен нагнетательным клапаном. При вращении вала по часовой стрелке ротор сжимает воздух, находящийся в цилиндре с левой стороны. В это время в свободное пространство, образовавшееся с правой стороны ротора, из всасывающего патрубка поступает газ. В полости с левой стороны ротора воздух сжимается до открытия нагнетательного клапана, после чего выталкивается в нагнетательный трубопровод. Сжатие воздуха происходит так же, как в поршневом компрессоре с самодействующими клапанами, т. е. конечное давление сжатия зависит от противодавления в нагнетательном трубопроводе.

При вращении эксцентрика ротор касается почти непрерывно своей образующей внутренней поверхности цилиндра компрессора, отделяя всасывающее отверстие от нагнетательного (зазор между ротором и цилиндром 0,1—0,15 мм). При вращении по часовой стрелке происходит одновременно с правой стороны ротора всасывание воздуха, а с левой — сжатие и нагнетание, всасывающий клапан отсутствует, всасывающее отверстие перекрывается ротором. Сжатие воздуха с левой стороны ротора начинается тогда, когда его образующая перейдет через нижнюю кромку всасывающего отверстия. Нагнетание заканчивается, когда ротор достигнет кромки нагнетательного окна. При дальнейшем движении ротора по образующей цилиндра нагнетательный клапан закрывается и начинается расширение воздуха, заключенного в мертвом пространстве.

Воздушный компрессор EXTEL ZVA-70

Ротационные пластинчатые компрессоры

Литой статор, составляющий основу компрессора, имеет внутреннюю некруговую цилиндрическую поверхность, контур основания которой рассчитывается по специальной программе и имеет сложную геометрию. Эта геометрия позволяет оптимизировать характер движения пластин при вращении ротора, обеспечивая Длинную дугу зоны сжатия без выделения зон всасывания и нагнетания. Литой статор образует картер. Ротор, так же как и его вал, изготовленный из шаровидного графита, укреплен в двух роликоподшипниках. Его расположение очень важно для КПД компрессора, поэтому оптимальным вариантом будет такой, при котором зазор между ротором и статором по образующей их поверхностей в зоне, отделяющей полость сжатия от полости всасывания, окажется минимальным.

Пластины, число которых в этом типе компрессора доходит до восьми, изготовлены из углеродного волокна, связанного ароматическим линейным полимером и пропитанного политетрафторэтиленом (PTFE или тефлон). Такая специальная обработка обеспечивает режим самосмазывания в случае неисправности масляного контура. Материал пластин очень прочный и способен выдерживать высокие температуры порядка 180°С. На выходе вала компрессора из картера предусмотрено классическое уплотнение, состоящее из стальной обоймы, керамического вкладыша и металлического сильфона.

Благодаря использованию дополнительного контура с теплообменником пластинчатый компрессор может работать при температурах испарения до −40°С. В этом случае жидкость высокого давления используют для питания промежуточного теплообменника: жидкость в основном контуре перед дросселированием переохлаждается, в то время как газ, расширившийся во вторичном контуре, впрыскивается в компрессор через отверстие, расположенное в зоне сжатия. В результате установки дополнительного теплообменника достигается двойной эффект: холодопроизводительность возрастает примерно на 20-30% при повышении потребляемой мощности всего на 8%, т. е. повышается холодильный коэффициент, и, с другой стороны, падает температура нагнетания.

Что касается возможности изменения холо-допроизводительности, то в этом типе компрессоров не предусматривается никаких внутренних устройств. Учитывая невысокую стоимость таких компрессоров и некоторые другие преимущества, их обычно используют только в установках, нагрузка которых меняется очень мало. Если же все-таки появляется желание изменить их холодопроизводительность, то необходимо менять число оборотов компрессора с помощью либо многоскоростного двигателя, либо преобразователя частоты, который может обеспечить непрерывное изменение скорости вращения в диапазоне от 400 до 4000 об/мин.

В пластинчатых компрессорах имеются также устройства защиты от гидроударов. Благодаря наличию отжимаемой плиты с возвратными пружинами в случае гидравлических уцаров можно открывать полости сжатия, в результате чего компрессор может непрерывно работать, даже если во всасывающую магистраль попадает жидкость.

Пластинчатые компрессоры имеют также систему смазки с контролем расхода масла, назначение которого состоит в защите компрессора от дефицита масла. Система смазки оснащена маслоотделителем, расположенным на нагнетательной магистрали. Масло при давлении нагнетания возвращается в компрессор для смазки уплотнений, двух роликоподшипников вместе с ротором и пластин, перед тем как вновь выйти через нагнетательное отверстие. Этот тип компрессора не требует ни масляного насоса, ни картера, ни подогревателя картера. Пластинчатые компрессоры используются на авторефрижераторах, междугородних автобусах, поездах и т.д. Ими оборудуют также охладители жидкостей.

Читать еще:  Газовый баллон 50 литров сколько килограмм

Ротационные компрессоры

Ротационные компрессоры относятся к объёмному типу компрессоров и осуществляют нагнетание за счёт сжатия вещества с помощью вращающегося ротора. Иногда этот тип компрессоров называют роторным, но это ошибочно, возникла эта ошибка, скорее всего, из-за некорректного перевода иностранной технической литературы.

Различают ротационные компрессоры с неподвижными пластинами, с вращающимися пластинами, двухроторные и с качающимся ротором.

Компрессор с неподвижными пластинами

Другое название данного компрессора — с катящимся ротором (ККР).Конструктивно такой компрессор представляет из себя вал двигателя на котором насажен цилиндрический ротор, но вал находится не в центре окружности, а эксцентрично,то есть смещён от центра. Вращается ротор внутри также цилиндрического корпуса. Между ротором и корпусом образуется зазор, величина которого при вращении из-за эксцентричности ротора изменяется. Где его величина минимальна находится нагнетательный патрубок, а где максимальна — всасывающий. Пространство между ними перекрывает подвижная пластина, плотно прижимающаяся пружиной к вращающемуся ротору,предотвращая перетекание рабочего вещества из зоны высокого давления в зону низкого. Наглядно это видно на рисунках:

Приемущества этого вида компрессоров:

-очень простая конструкция

-немного движущихся деталей

-меньшие пульсации давления, так как ротор движется непрерывно

-отличные массогабаритные показатели

-маленькие газодинамичесие потери на всасывании

-невысокая цена, из-за массовой распространённости

-перетекание газа из области всасывания в область нагнетания

-наличие «горячей точки», т.е. трения в месте соприкосновения ротора с корпусом.

Компрессоры с подвижными пластинами

Принцип действия этого типа компрессора такой же как и у предыдущего, с той лишь разницей, что пластины находятся на роторе и вращаются вместе с ним. Подробней это видно рисунке, для упрощения показано всего две пластины.

Преимущества и недостатки этого типа такие же как и у первого типа, за исключением:

-возможность развивать большее давление за счёт большего количества пластин

-больше точек трения

-более сложное изготовление

Ротационные компрессоры с двумя роторами

Применяет такие компрессоры компания Toshiba. Для чего-же,собственно, понадобилось усложнять конструкцию добавлением ещё одного ротора?

Представим однороторный компрессор, ротор на его валу расположен эксцентрично, то есть смещён геометрический центр и ,соответственно, центр тяжести. Такую конструкцию, например применяют в телефонах для виброзвонка — двигатель с грузиком, смещённым относительно центра. Можно вспомнить и лопасть вентилятора с одним винтом — при вращении идут биения и вибрации. Для уравновешивания и придумали добавить ещё один ротор.

Как следствие этого:

-уменьшенный уровень вибраций и шума

-повышение надёжности и долговечности (не только самого компрессора, но и всей конструкции холодильной машины)

-возможность снижения производительности до 15 % от номинальной

Последний пункт важен для инверторных кондиционеров, так даёт возможность не выключать компрессор, работая на малых оборотах, при этом экономится электроэнергия.

Компрессор с качающимся ротором

Данный вид компрессора использует корпорация Daikin, в её терминологии SWING. Основной причиной разработки этого компрессора послужил переход с хладагента R22 на другие виды хладагентов. При использовании фреона R22 для смазки применяется минеральное масло, а в составе самого фреона присутствует хлор, поэтому при работе компрессора с этим видом хладагента на поверхностях трущихся деталей образуется защитная ферро-хлоридная плёнка. Эта плёнка значительно снижает трение и риск коррозии. При использовании R410a и R407c эта плёнка отсутствует.

Следующий неприятный момент при использовании новых хладагентов — потери давления. Эти потери происходят из-за перетекания газа из одной зоны в другую, по исследованиям 70 % перетекания между ротором и цилиндром корпуса, а 30 % между цилиндром и торцом пластины. Эти потери зависят от наличия масляной плёнки и плотности прилегания ротора и пластины,которую, в свою очередь, нельзя сильно уменьшать, иначе увеличится сила трения.

Фирма Дайкин разработала и запатентовала ротационные компрессоры с качающимся ротором. В этом компрессоре пластина и ротор выполнены в виде ондной детали, которая совершает колебательные и возвратно-поступательные движения, из-за чего компрессор и получил название «с качающимся ротором», в англоязычной терминологии SWING (качаться-англ.)

В результате этого уменьшается трение между ротором и цилиндром корпуса, а также исключаются потери на трение и перетекания между пластиной и ротором.

Схематически это выглядит так:

Основная область применения ротационных компрессоров холодильные машины малой производительности — от полутора до десяти киловатт. На данный момент в 90 % кондиционеров применяют компрессоры данного типа в герметичном исполнении.

Ссылка на основную публикацию
Adblock
detector