C-triada.ru

Строительный журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ремонт импульсных блоков питания курс

Как быстро отремонтировать импульсный блок питания своими руками

В наше время практически все электроприборы бытового назначения имеют специальные приспособления, именуемые импульсными блоками. Они могут иметь вид как отдельного модуля, так и платы, размещенной в конструкции прибора.

Импульсный блок питания

Поскольку импульсные блоки предназначены для выпрямления и понижения сетевого напряжения, то они могут часто выходить из строя. Поэтому, чтобы не покупать новое дорогостоящее бытовое устройство, знания о том, как его можно починить своими руками будут достаточно востребованными. О том, как выявить неисправности работы данного прибора или платы, а также как самостоятельно провести его ремонт, вам расскажет данная статья.

Описание преобразователя напряжения

Импульсный блок питания может иметь вид платы или самостоятельного выносного модуля. Он предназначен, как уже говорилось, для понижения и выпрямление сетевого напряжения. Его необходимость основывается на том, что в стандартной сети питания имеется напряжение в 220 вольт, а для работы многих бытовых приборов необходимо гораздо меньшее значение этого параметра.
Сегодня, вместо стандартных понижающе-выпрямительных схем, собранных на основе диодного моста и силового трансформатора, используются блоки питания импульсного преобразования напряжения.

Обратите внимание! Несмотря на наличие высокой схемотехнической надежности, импульсные блоки питания часто ломаются. Поэтому в наше время очень актуален ремонт этих элементов электросхем.

Схема импульсного блока питания

Все типы источника питания импульсного вида (встроенного или вынесенного за пределы прибора) имеют два функциональных блока:

  • высоковольтный. В таком блоке питания происходит преобразование сетевого напряжения в постоянное при помощи диодного моста. Причем напряжение сглаживается до уровня 300,0…310,0 вольт на конденсаторе. В результате происходит преобразование высокого напряжения в импульсное с частотой 10,0…100,0 килогерц;

Обратите внимание! Такое устройство высоковольтного блока позволило отказаться от низкочастотных массивных понижающих трансформаторов.

  • низковольтный. Здесь же происходит понижение импульсного напряжения не необходимого уровня. При этом напряжение сглаживается и стабилизируется.

В результате такого строения на выходе из блока питания импульсного типа функционирования наблюдается несколько или одно напряжение, которое нужно для питания бытовой техники.
Стоит отметить низковольтный блок может содержать разнообразные управляющие схемы, повышающие надежность прибора.

Импульсный блок питания (плата). Цвета приведены на схеме

Поскольку блоки питания такого типа имеют сложное устройство, их правильный ремонт, проводимый своими руками, должен опираться на некоторые знания в электронике.
Осуществляя ремонт данного прибора, не стоит забывать, что некоторые его элементы могут находиться под сетевым напряжением. В связи с этим даже проводя первичный осмотр блока необходимо соблюдать предельную осторожность.
Ремонт в большинстве случаев не будет вызывать осложнений, т.к. импульсные блоки питания имеют типовое устройство. Поэтому и неисправности у них тоже будут схожими, а ремонт своими руками выглядит вполне посильной задачей.

Возможные причины поломки

Неисправности, которые приводят импульсный блок питания в нерабочее состояние, могут появляться по самым разнообразным причинам. Наиболее часто поломки происходят из-за:

  • наличия колебания сетевого напряжения. К неисправности могут привести те колебания, на которые не рассчитаны данные понижающе-выпрямительные модули;
  • подключение к блоку питания нагрузок, на которые бытовые приборы не рассчитаны;
  • отсутствие защиты. Не устанавливая защиту, некоторые производители просто экономят. При обнаружении такой неполадки нужно просто установить защиту в конкретное место, где она и должна находиться;
  • несоблюдение правил и рекомендаций эксплуатации, которые указаны производителями для конкретных моделей.

При этом в последнее время частой причиной поломки преобразователей напряжения является заводской брак или использование при сборке некачественных деталей. Поэтому, если вы хотите, чтобы ваш купленный импульсный блок питания проработал как можно дольше, не стоит покупать его в сомнительных местах и не у проверенных людей. Иначе это могут быть просто впустую потраченные деньги.
После диагностики блока зачастую выясняются следующие неисправности:

  • 40% случаев – нарушение работы высоковольтной части. Об этом свидетельствует перегорание диодного моста, а также поломка фильтрующего конденсатора;
  • 30% — пробоем биполярного (формирующего импульсы высокой частоты и располагающегося в высоковольтной части устройства) или силового полевого транзистора;
  • 15% — пробой диодного моста в его низковольтной части;

  • редко встречается выгорание (пробой) обмоток дросселя на выходном фильтре.

Все остальные поломки можно будет определить только специальным оборудованием, которое вряд ли хранится дома у среднестатистического человека. Для более глубокой и точной проверки необходим цифровой вольтметр и осциллограф. Поэтому если поломки не кроются в четырех приведенных выше вариантах, то в домашних условиях блок питания такого типа вы не сможете починить.
Как видим, ремонт, проводимый в данной ситуации своими руками, может иметь самый разнообразный вид. Поэтому, если у вас перестал работать компьютер или телевизор по причине поломки блока питания, то не нужно бежать в ремонтную службы, а можно попутаться решить проблему своими силами. При этом домашний ремонт обойдется значительно в меньшую стоимость. А вот если вы не сможете своими силами справиться с поставленной задачей, тогда можно уже идти на поклон к специалистам из ремонтной службы.

Алгоритм определения поломки

Любой ремонт всегда начинается с выяснения причины неисправности блока питания импульсного.

Обратите внимание! Для ремонта и поиска неисправностей импульсного блока питания вам потребуется вольтметр.

Для того чтобы ее выявить, необходимо придерживаться следующего алгоритма:

  • разбираем блок питания;
  • с помощью вольтметра измеряем напряжение, которое имеется на электролитическом конденсаторе;

Измерение напряжение на электролитическом конденсаторе

  • если вольтметр выдает напряжение в 300 В, то это означает, что предохранитель и все элементы электросети (кабель питания, сетевой фильтр входные дроссели), связанные с ним работают нормально;
  • в моделях с двумя конденсаторами небольших размеров напряжение, свидетельствующее об их исправности, которое выдает вольтметр, должно составить 150 В для каждого прибора;
  • если же напряжение отсутствует, тогда необходимо провести прозвонку диодов выпрямительного моста, предохранителя и конденсатора;

Обратите внимание! Самыми коварными элементами в электросхеме блока питания импульсного типа работы являются предохранители. Об их поломке не свидетельствуют никакие внешние признаки. Только прозвонка поможет вам выявить их неисправность. В случае сгорания они выдадут высокое сопротивление.

Предохранители импульсного блока питания

  • если была обнаружена неисправность предохранителей, то нужно проверять остальные элементы электросхемы, так как они редко когда сгорают в одиночку;
  • внешне достаточно легко выявить испорченный конденсатор. Обычно он вздувается или разрушается. Ремонт в данном случае будет заключаться в его выпаивании и замене на работоспособный.
  • Обязательно необходимо прозвонить на предмет исправности следующие элементы:
  • выпрямительный или силовой мост. Он имеет вид монолитного блока или организован из четырёх диодов;
Читать еще:  Как варить медные трубы

Силовой мост импульсного БП

  • конденсатор фильтра. Может выглядеть как один или несколько блоков, которые соединяются между собой последовательно или параллельно. Обычно конденсатор фильтра расположен высоковольтной части блока;
  • транзисторы, размещенные на радиаторе.

Обратите внимания! Проводя ремонт, нужно найти сразу все неисправные детали импульсного блока питания, так как их выпаивание и замену следует проводить одновременно! В противном случае замена одного элемента будет приводить к выгоранию силовой части.

Особенности ремонтных работ и инструменты для них

Для стандартного типа устройств вышеперечисленные этапы диагностики и проведения ремонтных работ будут идентичными. Это связано с тем, что все они имеют типовое строение.

Припаивание деталей к плате

Также, чтобы провести качественный самостоятельный ремонт импульсного преобразователя напряжения, необходим хороший паяльник, а также умение управляться с ним. При этом вам еще понадобиться припой, спирт, который можно заменить на очищенный бензин, и флюс.
Помимо паяльника в ремонте обязательно понадобятся следующие инструменты:

  • набор отверток;
  • пинцет;
  • бытовой мультиметр или вольтметр;
  • лампа накаливания. Может использовать в качестве балластной нагрузки.

С таким набором инструментов простой ремонт будет по силам любому человеку.

Проведение ремонтных работ

Собираясь своими руками починить испортившийся импульсный преобразователь напряжения, необходимо понимать, что такие манипуляции не проводятся для изделий, предназначенные для комплексной замены. Они не рассчитаны на ремонт и их не возьмется чинить ни один мастер, так как здесь нужен полный демонтаж электронной начинки и замены ее на новую работающую.

Плата блок питания импульсного принципа работы

Во всех остальных случаях ремонт в домашних условиях и своими руками вполне возможен.
Правильно проведенная диагностика является половиной ремонта. Неисправности, связанные с высоковольтной части обнаружатся легко как визуально, так и при помощи вольтметра. А вот неисправность предохранителя можно выявить при отсутствии напряжения на участке после него.
При обнаружении с ее помощью неисправностей остается просто произвести их одновременную замену. Осуществляя ремонтные работы, необходимо обязательно опираться на внешний вид электронной платы. Иногда, чтобы проверить каждую деталь, необходимо ее выпаять и протестировать мультиметром. Желательно проводить проверку всех деталей. Несмотря на затруднительность такого процесса, он позволит выявить все испорченные элементы электросхемы и вовремя их заменить, чтобы предотвратить перегорания прибора в обозримом будущем.

Замена перегоревших деталей

После того, как была проведена замена всех перегоревших деталей, необходимо установить уже новый предохранитель и проверить отремонтированный блок питания, включив его. Обычно, если все было выполнено правильно, а также соблюдены все нормы и предписания ремонтных работ, преобразователь заработает.

Заключение

Ремонт блока питания, работающего по импульсному принципу, можно вполне реализовать своими руками. Но для этого нужно правильно провести диагностику прибора, а также одновременно заменить все сгоревшие детали электросхемы. Выполняя все рекомендации, вы легко сможете провести необходимые ремонтные действия у себя дома.

Ремонт блоков питания в Москве

Мы нашли для вас 46 сервисных центров по ремонту блоков питания в Москве. Выберите подходящий сервис из списка, либо заполните заявку на ремонт и один из наших специалистов свяжется с вами.

  1. Центр сервисов
  2. Ремонт блоков питания

Выберите производителя блока питания или район

Мы подобрали для вас лучшие сервисы:

ПН-ПТ — с 10:00 до 21:00

СБ — с 10:00 до 19:00

ВС — с 10:00 до 19:00

Ремонт блоков питания MicroLab, Espada, Ascot и др. в сервисном центре Ремонт Марьино

Адрес:

Мячковский бульвар, 6к1

( рядом Люблино , Марьино )

ПН-ПТ — с 10:00 до 20:00

СБ — с 10:00 до 16:00

ВС — с 10:00 до 16:00

Ремонт блоков питания ACCORD, RaidMAX, SIRTEC и др. в сервисном центре Тех-Профи

Адрес:

( рядом Люблино , Марьино )

ПН-ПТ — с 10:00 до 21:00

СБ — с 10:00 до 21:00

ВС — с 10:00 до 21:00

Ремонт блоков питания EVGA, Adata, STM и др. в сервисном центре GOODSERVICE

метро Улица Скобелевская

( рядом Бульвар Адмирала Ушакова , Улица Старокачаловская )

Адрес:

Новое шоссе, 5к1

ПН-ПТ — с 10:00 до 20:00

СБ — с 10:00 до 20:00

ВС — с 10:00 до 18:00

Ремонт блоков питания Arctic, Espada, Winard и др. в сервисном центре ТехПрофикс

метро Рязанский проспект

( рядом Выхино , Кузьминки )

Адрес:

Рязанский проспект, 40/2

ПН-ПТ — с 10:30 до 19:00

СБ — с 11:00 до 17:00

Ремонт блоков питания Adata, Point of View, Tsunami и др. в сервисном центре ARS-MASTER.COM

( рядом Воробьёвы горы , Лужники , Фрунзенская )

Адрес: ул. Усачёва, д.37, стр.2

ПН-ПТ — с 10:00 до 20:00

СБ — с 10:00 до 20:00

ВС — с 10:00 до 20:00

Ремонт блоков питания Corsair, 3Cott, LinkWorld и др. в сервисном центре Элтоп

( рядом Красногвардейская , Орехово )

Адрес: МКАД, 24-й километр, 1, Москва

ПН-ПТ — с 10:00 до 21:00

СБ — с 10:00 до 21:00

ВС — с 10:00 до 21:00

Ремонт блоков питания Adata, Hkc, Krauler и др. в сервисном центре AistService

( рядом Новоясеневская , Тёплый Стан )

Адрес: Новоясеневский проспект, 7, ТЦ Калита, Строймаркет, пав. 1

ПН-ПТ — с 10:00 до 22:00

СБ — с 11:00 до 18:30

Ремонт блоков питания ENlight, Cooler Master, Delux и др. в сервисном центре Repair

метро Преображенская площадь

( рядом Сокольники , Черкизовская )

Адрес: Преображенская площадь, 7Ас1

Ремонт блоков питания Scythe, FinePower, Point of View и др. в сервисном центре EXPRESSTEX

метро Рязанский проспект

( рядом Выхино , Кузьминки )

Адрес: Рязанский проспект, 77

Адреса филиалов:

Белокаменная — Краснобогатырская улица, 2с73, БЦ Красный Богатырь, 2 этаж, офис 8

Беляево — улица Миклухо-Маклая, 53к1, вход с рекламой «Парикмахерская Эконом класса»

ПН-ПТ — с 10:00 до 19:00

СБ — с 10:00 до 17:00

Ремонт блоков питания IN SHIN, Foxconn, ThermaltakeZalman и др. в сервисном центре Технический центр Отрадное

( рядом Бибирево , Владыкино )

Адрес: Алтуфьевское шоссе, 22

ПН-ПТ — с 10:00 до 20:00

СБ — с 10:00 до 20:00

ВС — с 10:00 до 20:00

Ремонт блоков питания PowerColor, RaidMAX, KS-IS и др. в сервисном центре УТЮЖОК СЕРВИС

( рядом Измайловская , Щёлковская )

Адрес: Измайловский бульвар, 43

ПН-ПТ — с 10:00 до 19:00

СБ — с 11:00 до 19:00

ВС — с 11:00 до 19:00

Ремонт блоков питания Arctic, Deepcool, HIPRO и др. в сервисном центре Apple4you

метро Цветной бульвар

( рядом Менделеевская , Трубная , Чеховская )

Адрес: Садовая-Сухаревская улица, 2/34с1

ПН-ПТ — с 10:00 до 20:00

Читать еще:  Как зарядить батарейку мультиметра

Ремонт блоков питания Tsunami, STC, AcBel Polytech и др. в сервисном центре Fixit24.ru

( рядом Маяковская , Пушкинская , Театральная , Чеховская )

Адрес: Тверская улица, 20, офис 204

ПН-ПТ — с 10:00 до 20:00

СБ — с 10:00 до 20:00

ВС — с 10:00 до 20:00

Ремонт блоков питания Ice Hammer, Exegate, STC и др. в сервисном центре Сервис Эйнштейн

( рядом Алексеевская , Ботанический сад )

Адрес: Звёздный бульвар, 10с1, офис 28

ПН-ПТ — с 10:00 до 19:00

Ремонт блоков питания STM, SIRTEC, BFG и др. в сервисном центре BEZPK

Адрес: Дмитровское шоссе, д. 157 с 9

ПН-ПТ — с 10:00 до 22:00

СБ — с 10:00 до 22:00

ВС — с 10:00 до 22:00

Ремонт блоков питания Scythe, Point of View, APC и др. в сервисном центре Antares

( рядом Румянцево , Филатов Луг )

Адрес: Киевское шоссе, 23-й километр, 1, ТЦ Саларис, Р1 этаж

Адреса филиалов:

Филатов Луг — Московская улица, 3А, ТЦ Deluxe, 2 этаж

ПН-ПТ — с 09:00 до 20:00

СБ — с 10:00 до 16:00

ВС — с 10:00 до 16:00

Ремонт блоков питания ThermaltakeZalman, JNC, Favourite и др. в сервисном центре ЮЛТЕХ

( рядом Ленинский проспект , Профсоюзная )

Адрес: ул. Шверника, д.2, корп.2

ПН-ПТ — с 10:00 до 20:00

СБ — с 11:00 до 18:00

ВС — с 10:00 до 18:00

Ремонт блоков питания OCZ, AeroCool, Tsunami и др. в сервисном центре Ником Сервис

Адрес: Мурановская улица, 12

ПН-ПТ — с 10:00 до 20:00

СБ — с 10:00 до 20:00

ВС — с 10:00 до 19:00

Ремонт блоков питания 5bites, Ice Hammer, Spirit и др. в сервисном центре Сокол Сервис

( рядом Динамо , Сокол )

Адрес: Ленинградский проспект д.66

ПН-ПТ — с 10:00 до 21:00

СБ — с 10:00 до 21:00

ВС — с 10:00 до 21:00

Ремонт блоков питания FinePower, CWT, Foxconn и др. в сервисном центре ArsMobile

( рядом Аэропорт , Белорусская , Петровский парк )

Адрес: Ленинградский проспект, 27

Заявка на ремонт

Популярные сервисы

ПОИСК ПО АДРЕСУ

Найдите мастерскую по району, станции метро или улице.

ЛУЧШИЕ СЕРВИСЫ

Читайте и оставляйте отзывы,
выбирайте лучших мастеров

РЕШАЕМ ПРОБЛЕМЫ

Задавайте вопросы, получайте
квалифицированную помощь!

«Центр-сервисов» — это навигатор по сервисным центрам Москвы. Подберите удобный и подходящий сервисный центр, если у вас сломалась бытовая техника. Также, оставив онлайн заявку, вы можете рассчитывать на профессиональную помощь и консультацию опытных мастеров.

Самостоятельный ремонт импульсного блока питания компьютера

Всем известно, что техника работает на волшебном белом дыме, и когда он выходит — техника умирает. Когда в розетке скачет напряжение, нам представляется уникальная возможность стать свидетелями подобного чудесного явления. Так ко мне попал компьютерный блок питания CFI-S150X.

Найти в продаже блоки питания для корпусов формата mini-ITX крайне сложно. Об этом я уже рассказывал в статье о больших проблемах маленьких ITX . Однако, в некоторых случаях, с ремонтом импульсного блока питания компьютера сможет справиться даже начинающий радиолюбитель.

Сегодня я расскажу об этой простой неисправности и варисторах, а вы в комментариях напишите свои предположения для чего нужна обычная электрическая лампочка при ремонте блока питания.

После вскрытия корпуса блока питания, любой начинается с внешнего осмотра. На плате был обнаружен сгоревший предохранитель и ещё одна распавшаяся на части деталь, сильно напоминающая конденсатор. На самом деле это был варистор.

Что такое варистор и для чего он нужен

Само слово «варистор» состоит из сочетания двух слов VARI able resi STOR что должно означать изменяемое сопротивление. Однако это не переменный резистор и вручную тут ничего не меняется. Варистор сам изменяет значение своего сопротивления при изменении напряжения на нем и служит для подавления кратковременных скачков напряжения, тем самым защищая чувствительные электронные схемы.

Если импульс перенапряжения был слишком большой и мощный, то варистор выходит из строя. Порой его корпус трескается или раскалывается на несколько частей, как в моём случае. Варисторы подсоединяют параллельно нагрузке после предохранителей, и при броске входного напряжения основной ток протекает через них, а не через аппаратуру.

На графике выше видно как зависит проводимость варистора от приложенного к нему напряжения. При нормальном напряжении варистор пропускает через себя пренебрежительно малый ток, а при определённом пороговом напряжении он открывается и пропускает через себя весь ток, выжигая предохранитель и обесточивая нагрузку.

В блоке питания CFI-S150X используется варистор с маркировкой 7N241K, где цифра 7 соответсвует диаметру устройства (то есть равна 7 мм), а 241 – максимально допустимый показатель напряжения в вольтах. Точно такого мне найти не удалось, потому заменил на варистор с маркировкой 10D241K.

Маркировка несколько отличается, ведь производители вправе устанавливать свою собственную. Тут главное соблюдать допустимый показатель напряжения, а диаметр можно взять и чуть больше — на работу устройства это никак не повлияет. После замены варистора оставалось поставить новый предохранитель и проверить работу блока питания (тут то и нужна лампа накаливания и в следующий раз расскажу для чего).

Запустить блок питания без компьютера можно соединив перемычкой зелёный и чёрный провод на колодке.

В моём случае всё заработало. Убедившись с помощью мультиметра в наличие выходных напряжений 5B и 12В на разъёме, ремонт блока питания можно считать оконченным.

P.S. Хотел ещё выложить схему блока питания CFI-S150X, но её мне найти не удалось. Зато нашёл один форум, где его работа хорошо расписана (правда по польски): https://www.elektroda.pl/rtvforum/topic2279503.html

Может кому пригодится в будущем ремонте. Там была другая проблема — не было дежурки +5VSTB и помогла замена диодов D7 и D8 на LL4148.

Подписывайтесь на канал Яндекс.Дзен и узнавайте первыми о новых материалах, опубликованных на сайте.

Диагностика импульсного блока питания. Часть I, используемые определения

Введение.

Мы уже рассматривали классический вариант диагностики импульсного блока питания некоторые моменты мы сознательно опустили, для более простой подачи материала. Практика показала, что у части специалистов возникают вопросы даже после ознакомления с публикацией, постараемся исправить этот пробел. Материал является самостоятельным и строго ориентирован на ремонт блока питания с ШИМ UC3843 (3842,3844,3845). В качестве примера будем рассматривать уже рассмотренный блок питания D-Link JTA0302D-E (5В*2А) выполненного на ШИМ 3843 в виду его классического исполнения.

Схемотехника.

Хотя часть ремонтируемых блоков питания не имеют родных схем, большинство ремонтов блоков питания на ШИМ 3843 (3842,3844,3845) мы выполняем по нижеприведенной принципиальной электрической схеме.

Читать еще:  Сколько в одном ампере ватт таблица

Схема блока питания D-Link JTA0302D-E (5В*2А), такая схемотехника характерна для канонических вариантов схем.

Подобная схема хоть и не соответствует стандартам, но максимально приближена к каноническому варианту исполнения принципиальных электрических схем. Некоторые признаки указывают, что схема была срисована с уже готового блока питания, а значит так ее видит автор. Если бы эту схему рисовали мы, то получился бы несколько другой вариант, по которому проще ремонтировать, схема от немного другого блока питания, несколько сумбурно прорисованы цепи обратной связи, холодная и горячая земля, но все же по ней проще делать диагностику.


Схема блока питания D-Link 5В*2А, такая схемотехника характерна для наглядных пособий по ремонту.

Отличие этих двух схем в элементной базе небольшие, но есть серьёзные различия в исполнении, если первая схема ориентирована на ГОСТ, то вторая схема нарисована специалистом ранее ремонтировавшим подобный блок питания.

Терминология.

Так как материал рассчитан на специалиста, редко занимающегося ремонтом импульсных блоков питания, то поиск по сопутствующим ресурсам или ответы от более опытных коллег, иногда ставят в тупик, вместо того чтобы помочь в решении проблемы. Такое происходит от специфики терминологии используемой в среде специалистов при ремонте блоков питания. Стоит отметить терминология может меняться от региона к региону, например грифлик может называться снаббером, а пусковой конденсатор – конденсатором первого удара.

Схема блока питания D-Link 5В*2А, с небольшими корректировками, для удобства чтения.

Структурная блок схема блока питания D-Link 5В*2А

Что бы не было неоднозначности, конкретно пропишем каждые элементы блок схемы, функционал и особенности диагностики рассмотрим позже.

1.Входной фильтр

Предохранитель F1 (2.25А) тут возможно опечатка или неудачное сокращение, скорее всего имеется ввиду 2А*250В, по функционалу — не занимается фильтрацией, но мы его отнесли к цепям входного фильтра
Терморезистор TR(5 Ом) необходим для «мягкого пуска» блока питания в момент включения и хотя по функционалу — не занимается фильтрацией, мы его отнесли к цепям входного фильтра.
Х-конденсатор XC1 (100 pF*250B), тут стоит обратить внимание – это X конденсатор.
Дроссель L1 – как правило это проволочный дроссель на феррите (не пермаллой), выполненный в виде трансформатора.

2.Входной выпрямитель

Диодный мост DB1-DB4(1N4007)
Конденсатор входного выпрямителя С1(33мкф*400В)

3.Высокочастотный трансформатор

T1.1 Высоковольтная (первичная) обмотка
T1.2 Обмотка для питания ШИМ
T1.3 Низковольтная (вторичная) обмотка

4. Грифлик.

Резистор R1(39кОм) редко бывает в планарном исполнении, так как на нем рассеивается значительная мощность
Конденсатор С2(4700 пФ*2кВ) использование низковольтного конденсатора в этой цепи недопустимо.
Быстродействующий диод VD1(PS1010R) – не смотря на рабочее напряжение конденсатора 2кВ, рабочее напряжение этого диода обычно 1кВ, при хорошем токе в 1А.

5. Выходной выпрямитель.

Диод Шотки VD5-VD6 (SB340) использование диодов Шотки позволяет на малых мощностях обойтись без дополнительных элементов охлаждения.
Конденсаторы LowESR C9, C10 (680 мкФ*10В) использование обычных конденсаторов допустимо, но резко снижает ресурс блока питания, так как эти конденсаторы работают в очень жестком режиме.
Дроссель L2 выполняет двойную функцию является накопителем для конденсатора С20, а так же является элементом фильтра.
Конденсатор С20 (220мкФ*10В) – благодаря дросселю L2 работает в нормальном режиме и особых требований, кроме массогабаритных показателей, к этому конденсатору не предъявляется.
Резистор R21(220 Ом) – формально не является элементом выходного выпрямителя, а служит для быстрого разряда С9,С10, С20, L2.

6. Силовой ключ.

МОП транзистор с n-каналом VT1(P4NK60Z), полевой транзистор на работу с которым рассчитан ШИМ UC3843

7. Токовый датчик.

Резистор R2(1.5 Ом) не смотря на то, что рассеивает значительную мощность, встречается как в планарном так и проволочном исполнении. В случае планарного исполнения набирается путем параллельного соединения нескольких планарных резисторов.

Резистор R8 (300 Ом), R3(750кОм) и С4 (10нФ) мы не хотели добавлять эти элементы в раздел токовый датчик, так как они создают некоторую путаницу в терминологии, ведь под понятием токовый датчик подразумевается именно резистор R2(1.5 Ом) и только он, но слово из песни не выкинешь, так как формально эти элементы так же являются цепями токового датчика, мы вынуждены их упомянуть, тем самым создав некоторую путаницу в терминологии токового датчика.

8. Цепь запуска.

Резистор R4 (300кОм) не смотря на простоту один из самых сложных элементов блока питания, так именно он определяет возможные замены ШИМ на аналоги, именно он выглядит как неисправный элемент, так как он рассеивает значительные мощности, именно при замене этого резистора забывают посмотреть рабочее напряжение резистора, а ведь оно должно быть не менее 400 В, для примера, планарный резистор типоразмера 1206 имеет максимальное рабочее напряжение 250В.

9. Рабочее питание

T1.2 Обмотка для питания ШИМ
Резистор R9 (5.1 Ом) элемент интегрирующей цепи для гашения паразитных выбросов трансформатора, очень неоднозначный элемент – именно неудачный выбор (слишком большой номинал) этого элемента заставляет срываться блок питания на холостом ходу.
Выпрямительный диод VD2 (1N4148) – обыкновенный диод без всяких изысков.
ZD1 (BZX55C20) еще один неоднозначный элемент схемы, о нем мы поговорим попозже и рассмотрим подробнее, на данном этапе лишь укажем его характеристики 20В, 5 мА. Отметим только тот факт, что он доставляет много проблем начинающим ремонтникам.

10.Пусковой конденсатор.

Конденсатор С6 (47мкФ*25В) – без преувеличения можно назвать основным элементом импульсного блока питания. Косвенно, как только механик начинает видеть этот конденсатор только посмотрев на блок питания, можно говорить о квалификации этого ремонтника. Отметим – этот элемент всегда подлежит замене при любом ремонте импульсного блока питания, пренебрежение этой рекомендацией превращает ремонт в борьбу с ветряными мельницами.

11. ШИМ.

U2(UC3843) – не нуждается представлении, отметим только это самый простой в реализации и надежный в эксплуатации ШИМ для своего времени.

12. Драйвер силового ключа.

Резистор R5(150 Ом), рассматриваемая схема самый неудачный пример для рассматривания драйвера силового ключа, так как большинстве своем, драйвер имеет радикальное отличие от рассматриваемого, обычно это резистор номиналом 15-30 Ом.

13. Внешние цепи генератора.

Резистор R11(3кОм) и конденсатор С5(10нФ) задают частоту генерации.

14. Обратная связь.

Делитель на резисторах R22(5.25кОм) и R23(4.87 кОм)
Токоограничивающий резистор R17(470 Ом)
Оптопара гальванической развязки U1.1, U1.2
Регулируемый стабилитрон U3(KA431AZ)
Элементы коррекции цепи обратной связи конденсаторы С12 (1мкФ*50В), С3(10нФ)

Отдельно стоит отметить помехоподавляющий Y конденсатор YC2(2200пФ), но не столько из за его функционала, сколько благодаря ему можно (и нужно) отличать «горячую» и «холодную» землю.

Ссылка на основную публикацию
Adblock
detector