При какой температуре плавится сталь
Температура плавления нержавеющей стали и чугуна
Сталь — это сплав железа, к которому примешивают углерод. Её главная польза в строительстве — прочность, ведь это вещество длительное время сохраняет объем и форму. Все дело в том, что частицы тела находятся в положении равновесия. В этом случае сила притяжения и сила отталкивания между частицами являются равными. Частицы находятся в чётко обозначенном порядке.
Есть четыре вида этого материала: обычная, легированная, низколегированная, высоколегированная сталь. Они отличаются количеством добавок в своём составе. В обычной содержится малое количество, а дальше возрастает. Используют следующие добавки:
Температуры плавления стали
При определённых условиях твёрдые тела плавятся, то есть переходят в жидкое состояние. Каждое вещество делает это при определённой температуре.
- Плавление — это процесс перехода вещества из твёрдого состояния в жидкое.
- Температура плавления — это температура, при которой твёрдое кристаллическое вещество плавится, переходит в жидкое состояние. Обозначается t.
Физики используют определённую таблицу плавления и кристаллизации, которая приведена ниже:
На основании таблицы можно смело сказать, что температура плавления стали равна 1400 °C.
Нержавеющая сталь
Нержавеющая сталь — это один из многих железных сплавов, которые содержатся в стали. Она содержит в себе Хром от 15 до 30%, который делает её ржаво-устойчивой, создавая защитный слой оксида на поверхности, и углерод. Самые популярные марки такой стали зарубежные. Это 300-я и 400-я серии. Они отличаются своей прочностью, устойчивостью к неблагоприятным условиям и пластичностью. 200-я серия менее качественная, но более дешёвая. Это и является выгодным для производителя фактором. Впервые её состав заметил в 1913 году Гарри Бреарли, который проводил над сталью много разных экспериментов.
На данный момент нержавейку разделяют на три группы:
- Жаропрочная — при высоких температурах имеет высокую механическую прочность и устойчивость. Детали, которые из неё изготавливаются применяют в сферах фармацевтики, ракетной отрасли, текстильной промышленности.
- Ржаво-стойкая — имеет большую стойкость к процессам ржавления. Её используют в бытовых и медицинских приборах, а также в машиностроении для изготовления деталей.
- Жаростойкая — является устойчивой при коррозии в высоких температурах, подходит для использования на химических заводах.
Температура плавления нержавеющей стали колеблется в зависимости от её марки и количества сплавов приблизительно от 1300 °C до 1400 °C.
Чугун и сталь
Чугун — это сплав углерода и железа, он содержит примеси марганца, кремния, серы и фосфора. Выдерживает невысокие напряжения и нагрузки. Один из его многочисленных плюсов — это невысокая стоимость для потребителей. Чугун бывает четырех видов:
Белый — имеет высокую прочность и плохую способность к обработке ножом. Виды сплава по увеличению количества углерода в составе: доэвтектический, эвтектический, заэвтектический. Его назвали белым из-за того, что в разломе он имеет белый цвет. А также белый чугун обладает особым строением металлической массы и большой изностойкостью. Полезен в изготовлении механических деталей, которые будут работать в среде с отсутствием смазки. Его используют для изготовления приведённых ниже видов чугуна.
- Серый чугун — содержит углерод, кремний, марганец, фосфор и немного серы. Его можно легко получить, и он имеет плохие механические свойства. Используется для изготовления деталей, которые не подвергаются воздействию ударных нагрузок. В изломе есть серый цвет, чем он темнее, тем материал мягче. Свойства серого чугуна зависят от температуры среды, в которой он находится, и количества разных примесей.
- Ковкий чугун — получают из белого в результате томления (длительного нагрева и выдержки). В состав вещества входят: углерод, кремний, марганец, фосфор, небольшое количество серы. Является более прочным и пластичным, легче поддаётся обработке.
- Высокопрочный чугун — это самый прочный из всех видов чугунов. Содержит в себе углерод, марганец, серу, фосфор, кремний. Имеет большую ударную вязкость. Из такого важного металла делают поршни, коленчатые валы и трубы.
Температуры плавления стали и чугуна отличаются, как утверждает таблица, приведённая выше. Сталь имеет более высокую прочность и устойчивость к высоким температурам, чем чугун, температуры отличаются на целых 200 градусов. У чугуна это число колеблется приблизительно от 1100 до 1200 градусов в зависимости от содержащихся в нем примесей.
Температура плавления металлов и сплавов с таблицей.
Каждый металл и их сплавы имеют различные свойства. Одно из таких свойств — температура плавления. Каждый металл плавится при разной температуре. Все что нужно для перевода вещества из твёрдого состояния в жидкое — источник тепла, который будет разогревать металл до определенной температуры.
Так как у каждого металла температура плавления различная, можно определить менее устойчивый металл к температуре и более. Так самый легкоплавкий металл — ртуть, он готов перейти в жидкое состоянии при температуре равно 39 градусов по цельсию. А вот вольфрам( из чего собственно и сделаны вольфрамовые электроды для аргоновой сварки), расплавится только по достижению температуры в 3422 градусов цельсии.
Что касается сплавов, таких как сталь и прочих, определить температуру, при которой те будут плавиться, довольно сложно. Вся сложность в их составе… Так как состав разный, то и температура плавления различная. Как правило, для сплавов указывается диапазон температур, при которых он будет плавиться. Вообще, температура плавления металлов интересная тема.
Способы плавления
Способов плавления два — внешний и внутренний. Каждый из способов по своему эффективен. Во время применений внешнего способа плавления, на металл или сплав воздействуют теплом с наружи, на пример в печи. А в случае с внутренним, через металл пропускается высокий разряд электрического тока или воздействуют электромагнитным полем.
На фото индукционный электромагнитный нагреватель металла для кузнечного дела.
Процесс плавления
Во время нагрева металла, в его кристаллической решетке начинается повышенное движение молекул. Они начинают двигаться с высокой(относительно) амплитудой, что увеличивает расстояние, между кристалами самой решетки. Образуются дефекты( пустота между атомами), что и является началом процесса плавления. Вот так происходить плавление металла при определенных температурах.
Группы металлов по температуре плавления
Все металлы можно разделить на три группы в связи с температурой их плавления. Ниже можно наблюдать список групп.
- Тугоплавкие (от 1600°C и выше)
- Среднеплавкие (от 600°C до 1600°C)
- Легкоплавкие (до 600°C)
Выше вы можете наблюдать три группы плавления металлов по необходимой температуре. Какие это металлы конкретно, вы сможете посмотреть в таблице.
Таблицы плавления металлов и сплавов
Ниже, представлены таблицы, для наглядного знакомства с температурами плавления тех или иных металлов и их сплавов.
Температура кипения и плавления металлов. Температура плавления стали
Температура кипения и плавления металлов
В таблице представлена температура плавления металлов tпл, их температура кипения tк при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.
Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.
По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.
Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.
Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:
- температура плавления алюминия 660,32 °С;
- температура плавления меди 1084,62 °С;
- температура плавления свинца 327,46 °С;
- температура плавления золота 1064,18 °С;
- температура плавления олова 231,93 °С;
- температура плавления серебра 961,78 °С;
- температура плавления ртути -38,83°С.
Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.
Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см 3 , то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.
Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.
Температура плавления стали
Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.
Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.
Статьи
Температура плавления (температура ликвидус) — это температура, при которой вещество переходит в полностью жидкое состояние. Температура затвердевания (температуру солидус) — это такая температура, при которой вещество переходит полностью в твердое состояние.
Для чистых веществ (элементов) температуры ликвидус и солидус совпадают. Для растворов же, к которым в том числе относятся сталь и чугун, существует, так называемый, температурный интервал кристаллизации, в котором одновременно сосуществуют твердая и жидкая фазы.
Расчет температуры плавления и затвердевания стали
Температуры плавления и затвердевания стали зависят от ее состава.
Как правило при расчете TL и TS делают допущение об аддитивности влиянии легирующих и примесей на значения этих величин. При этом изменение температуры плавления/затвердевания, обусловленное наличием того или иного элемента, рассчитывают как
TL/S сплав = Т — ΣdTL/Si
где TL/Sсплав — температура ликвидус / солидус сплава, К;
Т — температура плавления растворителя (железа), К;
dTL/Si — снижение TL и TS, обусловленное наличием в металле i-го элемента, К.
Влияние различных элементов на температуру плавления и кристаллизации определяют по диаграммам состояния для каждого элемента i (использованные диаграммы состояния приведены ниже в таблице).
При этом допускали, что их влияние на рассматриваемые величины носит линейный характер, т.е.
dTL/Si = kL/Si·[i]
где kL/Si — средний коэффициент наклона линии ликвидус (солидус) на диаграмме состояния в определенном интервале концентраций рассматриваемого элемента, К/%;
[i] — концентрация элемента i, % масс.
kL/Si = <(TL/Si)а - (TL/Si)b>/<[i]а - [i]b>
где (TL/Si)а и (TL/Si)b — температура ликвидус/солидус расплава при концентрации элементаi в нем равной [i]а и [i]b, соответственно, К.
Конкретные значения kL/S i были получены следующим образом:
kLC = (1539 — 15. )/. = 64 kSC = (1539 — . )/. = 356 при С 0,1
kLCr = (1539 — 1515)/22 = 1,09 kSCr = (1539 — 1505)/22 = 1,54
kLNi = (1539 — 1449)/50 = 1,80 kSNi = (1539 — 1436)/50 = 2,06
kLMo = (1539 — 1460)/33 = 2,39 kSMo = (1539 — 1450)/33 = 2,70
kLV = (1539 — 1475)/30 = 2,13 kSV = (1539 — 1468)/30 = 2,37
kLS = (1539 — 1530)/0,20 = 45,0 kSS = (1539 — 1365)/0,20 = 870
если содержание серы более 0,2, то dTSS= 1539 — 1365 = 174
kLP = (1539 — 1400)/5 = 27,8 kSP = (1539 — 1050)/5 = 97,8
Влияние углерода на температуры ликвидус и солидус целесообразно рассчитывать с учетом изображенных на рисунке ниже рагрессионных выражений.
Таким образом, температура ликвидус и солидус рассчитываются как
Следует подчеркнуть, что величина TS не представляет практического интереса, так как в процессе кристаллизации происходит значимое перераспределение элементов между жидкой и твердой фазой, в результате которого жидкость обогащается ликватами, прежде всего углеродом, серой и фосфором (чем определяется способность элементов к ликвации Вы можете узнать здесь), что, естественно, снижает температуру затвердевания, поэтому температура, при которой разливаемый металл полностью затвердевает в большинстве случае составляет величину гораздо меньшую, чем расчетное значение TS.
Ниже приведена работа А. Н. Смирнова, более подробно рассматривающая вопрос определения температуры плавления и затвердевания стали
Расчет температуры ликвидус стали
А. Н. Смирнов, Л. Неделькович, М. Джурджевич, Т. В. Чернобаева и 3. Оданович
Донецкий государственный технический университет (Украина) и Белградский университет (Югославия)
Точная оперативная информация о температуре ликвидус стали имеет большое практическое значение, так как в зависимости от имеющегося в цехе оборудования для внепечной обработки именно эта температура определяет температурный режим от выпуска до окончания разливки плавки, особенно на МНЛЗ. Это дает возможность работать с оптимально низкой степенью перегрева и обеспечивает мелкозернистую литую структуру и высокое качество заготовки. Известно, что измерение температуры ликвидус (TL) не вызывает значительных затруднений. Однако заданный химический состав стали достигается к концу внепечной обработки перед началом непрерывной разливки, что существенно ограничивает возможности использования экспериментальных данных (записи кривой охлаждения). Поэтому для оперативного определения значения TL целесообразно проводить расчеты с использованием данных о химическом составе стали.
Между тем, выбор какого-либо универсального метода расчета температуры ликвидус на практике вызывает значительные затруднения, так как рекомендации специалистов, занимающихся решением этой проблемы, довольно противоречивы. Сравнение точности и надежности методов расчета TL для стали различных марок выполнено в настоящей работе.
Большая часть известных методов расчета температуры ликвидус углеродистой и легированной стали основана на полиномных выражениях, которые в обобщенном виде могут быть представлены следующим образом [1. 9]:
где Tплав Fe — температура плавления чистого железа (в соответствии с большей частью известных рекомендаций Tплав Fе = 1539 °С); а — коэффициент приведения температуры плавления чистого железа (вводится в случае принятия значения температуры плавления железа отличного от приведенного выше); а1 и а2 — коэффициенты значимости 1-го и 2-го порядка для соответствующего элемента i, содержащегося в стали данной марки; [i] — содержание элемента i в стали данной марки, %.
В качестве основы выражений такого типа принята гипотеза о том, что каждый из химических элементов влияет на снижение температуры ликвидус железа независимо один от другого. При этом результирующее влияние всех растворенных в стали элементов на снижение температуры ликвидус может быть получено на основании двойных диаграмм состояния Fe-Хi,. Поэтому эти выражения различаются только тем, каким образом аппроксимируется линия ликвидус в бинарной диаграмме со стороны железа. В простейшем случае она заменяется касательной прямой на линию ликвидус со стороны железа, а выражение для температуры ликвидус упрощается до полинома первого порядка. Подобные выражения, как видно из табл. 1 [1. 4], различаются по значениям коэффициентов аi и принятой температуре плавления железа.
Влияние изменения концентрации каждого химического элемента на снижение температуры плавления железа может быть также учтено описанием линии ликвидус с помощью полинома второго порядка или вписыванием ломаной линии в кривую значений температуры ликвидус. Причем неодинаковый наклон звеньев ломаной линии в концентрационных промежутках учитывает влияние собственной концентрации каждого элемента на снижение температуры плавления железа. В качестве иллюстрации в табл. 1 приведены данные работ [5. 7], где учитывается только концентрационная зависимость влияния углерода, и работ [8, 9], где эта концентрационная зависимость выражается и для ряда других элементов в стали. Приведенными в табл. 1 данными можно пользоваться только в тех концентрационных областях, в которых при затвердевании образуется твердый раствор.
Однако средние квадратичные отклонения σ (табл. 1) не могут служить обобщенным критерием оценки достоверности и применимости каждой из формул, так как специалисты обычно используют несколько отличные в техническом исполнении методы и приборы для измерения температуры ликвидус стали. По-видимому, такая оценка должна проводиться для данных, которые получены в примерно одинаковых условиях при достаточно надежном измерении температуры ликвидус применительно к большому массиву марок стали.
В настоящей работе были отобраны результаты измерений температуры ликвидус для стали 87 марок по данным А.А. Howe [10]. Химический состав стали некоторые из этих марок и результаты измерений температуры ликвидус приведены в табл. 2. При этом для стали состава 1-10 температуру ликвидус определяли путем термического анализа образца массой 400 г, для стали состава 11-20 — одновременно путем термического и дифференциального термического анализа образца массой 40 г.
Было определено, что расчетные значения температуры ликвидус в большей части случаев превышают экспериментальные данные. С уменьшением температуры ликвидус, которое соответствует росту содержания углерода и легирующих элементов в стали, величина разброса расширяется.
Результаты оценки достоверности расчетов температуры ликвидус (табл. 3) показывают, что использование предложенных формул не отличается высокой степенью точности, так как даже наиболее точные из результатов расчетов имеют среднее квадратичное отклонение около ±2,5, соответствующее полосе разброса ±7,5 °С.
По мнению авторов настоящей статьи, такое отклонение расчетных данных от экспериментальных может быть вызвано в основном тем, что эти формулы не учитывают характер взаимодействия отдельных химических элементов при определенной их концентрации. Из работ [11-13] известно, что, если при наличии какого-либо другого элемента или с увеличением собственной концентрации коэффициент активности данного элемента изменяется, то и его влияние на TL стали должно соответственно изменяться.
Возрастание влияния коэффициента активности углерода с повышением его концентрации в стали проиллюстрировано на примере стали, содержащей 1,48 % С (табл. 4). При таком увеличении коэффициента активности углерода его действительное влияние на снижение температуры ликвидус, определенное экспериментально, оказывается значительно большим, чем это можно принять по результатам расчетов по известным формулам. Поэтому в большей части случаев расчетные значения TL заметно превышают экспериментальные. В противном случае, если сталь содержит элемент, снижающий активность углерода, и соответственно углерод уменьшает активность этого элемента в стали (Б, табл. 4, марганцовистая сталь), действительное снижение температуры ликвидус, определенное экспериментально, меньше, чем рассчитайное по формулам, не учитывающим взаимное влияние активностей, что выражается в положительном отклонении разностей между экспериментальными и расчетными значениями TL. Более сложный пример (В, табл. 4) для стали с высоким содержанием никеля иллюстрирует большие отклонения разностей между экспериментальными и расчетными значениями TL в положительную сторону практически по всем формулам, что, по-видимому, является следствием неадекватного описания линии ликвидус в бинарной системе Fe-Ni.
Следует отметить, что рассмотрены (табл. 4) только двухкомпонентные и трехкомпонентные системы, причину отклонения расчетных экспериментальных значений TL в которых можно достаточно аргументированно объяснить. Наибольший разброс отклонений значений TL наблюдается для легированной стали многокомпонентного состава, где взаимодействие между элементами более сложное. Следовательно, для стали такого состава отклонения, вызванные неадекватным учетом эффектов таких взаимодействий на снижение температуры ликвидус, менее предсказуемы.
Как видно из табл. 2, для группы углеродистой и низколегированной стали dTср имеет отрицательное значение и по абсолютному значению в каждом отдельном случае большеdTmin. В более 90 % случаев значения dTmin распределены по нормальному закону в интервале ± 2 °С около фактической температуры ликвидус, а около 70 % — в интервале ± 1 °С.
Таблица 1. Коэффициенты a, а1 и a2 характеризующие степень влияния содержащихся в стали химических элементов на снижение температуры ликвидус*