C-triada.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Механические характеристики алюминиевых сплавов

Механические свойства сплавов цветных металлов

Основные характеристики механических свойств сплавов цветных металлов

  • E — модуль упругости — коэффициент пропорциональности между нормальным напряжением и относительным удлинением;
  • G — модуль сдвига (модуль касательной упругусти) — коэффициент пропорциональности между касательным напряжением и относительным сдвигом;
  • μ — коэффициент Пуассона — абсолютное значение отношения поперечной деформации к продолной в упругой области;
  • σт — предел текучести (условный) — напряжение при котором остаточная деформация после снятия нагрузки составляет 0,2%;
  • σв — временное сопротивление (предел прочности) — прочность на разрыв;
  • δ — относительное удлинение — отношение абсолютного остаточного удлинения образца после разрыва к начальной расчётной длине;
  • твёрдость (HB, HRC, HV).

Механический свойства алюминиевых сплавов

Для обозначения состояний деформируемых сплавов приняты следующие обозначения: М — мягкий, отожжённый; П — полунагартованный; Н — нагартованный; Т — закалённый и естественно состаренный; Т1 — закалённый и искусственно состаренный на высокую прочность; Т2 — закалённый и искусственно состаренный по режиму, обеспечивающему по сравнению с режимом Т1 более высокие значения вязкости разрешения и сопротивления коррозии под напряжением; Т3 — аналогично Т2 с улучшенными свойствами. Буква «ч» в обозначении марки сплава указывает на повышенную чистоту сплава (по содержанию примесей).

Механические свойства алюминиевых деформируемых сплавов

E = 70. 72 ГПа, G = 27. 28 ГПа, коэффициент Пуассона μ = 0,31. 0,33.

Механические свойства титановых сплавов

E = 110. 120 ГПа, G = 42. 45 ГПа, коэффициент Пуассона μ = 0,31. 0,34.

Механический свойства медных сплавов

Медные сплавы разделяются на две основные группы: латуни и бронзы. Латуни — сплавы, легированные цинком. Различают простые и специальные латуни.

Простые латуни (двойные сплавы) маркируют буквой Л, за которой следует содержание меди в процентах. В обозначении специальных латуней после буквы Л следуют заглавные буквы легирующих элементов и содержание меди в процентах, затем через тире — процентное содержание каждого легирующего элемента. Бронзы — сплавы, легированные различными элементами за исключением цинка. Маркируют бронзы буквой Бр, в остальном повторяется система маркировки латуней. Сплавы, в которых основным легирующим элементом является никель, именуются медно-никелевыми и имеют специальные названия. Деформируемые медные сплавы поставляются в мягком (отожженном и закаленном), полутвердом (обжатие 10-30%), твердом (обжатие 30-50%) и особо твердом (обжатие более 60%) состояниях. Сплавы на основе олова или свинца — баббиты, маркируются буквой Б, за которой следует цифра, обозначающая содержание олова в сплаве.

Читать еще:  Медь и латунь разница

Технологические свойства алюминиевых сплавов.

Технология изготовления корпусных конструкций из алюминиевых сплавов

Алюминиевые сплавы

В судостроении для корпусных конструкций наряду со сталями различных марок применяют легкие сплавы.

Легкие сплавы обладают высокой удельной прочностью и наиболее широко применяются при изготовлении скоростных судов, яхт, небольших катеров, а также надстроек судов (см. рис.12.1, 12.2).

Рис.12.1. Корпус яхты из алюминиевого сплава

Из легких сплавов наибольшее распространение получили алюминиевые удельной массой 2,6 – 2,8 г/см 3 . Алюминиевые сплавы обладают высокой коррозионной стойкостью; меньше, чем сталь, подвержены обрастанию морскими организмами и немагнитны.

Рис.12.2. Стальное судно с надстройкой из алюминиевого сплава

Введение в алюминиевые сплавы таких металлов как марганец Mn, магний Mg, кремний Si, медь Cu, цинк Zn позволяет получать материалы с разнообразными механическими и технологическими свойствами (см. рис.12.3.).

По сравнению со стальным прокатом, эти сплавы имеют особенности в обработке, которые обусловлены химическим составом и механическими характеристиками

Алюминиевые сплавы разделяют на две группы:

литейные, применяемые для изготовления фасонного литья;

деформируемые, применяемые для изготовления листов, профилей и поковок.

Литейные сплавы в судостроении применяют для отливки судовых деталей любой конфигурации – дельные вещи, детали судовых устройств, оборудование кают и тому подобное.

Деформируемые сплавы в свою очередь разделяют на сплавы, упрочняемые и не упрочняемые термической обработкой.

К термически не упрочняемым сплавам относятся:

а) – сплавы алюминия с марганцем – АМц (Al+Mn). Эти сплавы свариваются и предназначены для изготовления судовых конструкций, которые не рассчитываются на прочность (легкие переборки, листы зашивки), а также для деталей, которые изготавливаются штамповкой.

б) – сплавы алюминия с магнием – АМг (Al+Mg). Эти сплавы в зависимости от марки могут также применяться для корпусов морских и речных судов и быстроходных судов.

Для термически не упрочняемых сплавов по сравнению с термически упрочняемым характерна повышенная пластичность, более низкая прочность, хорошая свариваемость и более высокая коррозионная прочность.

Термически упрочняемые сплавы обладают более низкой коррозионной стойкостью и высокими механическими характеристиками, которые достигаются в результате термообработки. При повторном нагреве, например, в процессе сварки, прочность таких сплавов снижается на 40-60% и приближается к характеристикам термически не упрочняемых сплавов.

Читать еще:  Как подслушать разговор через стену

Рис.12.3. Основные системы легирования алюминиевых сплавов.

1 – литейные сплавы; 2 – термически не упрочняемые сплавы;

3 – сплавы, упрочняющие при старении.
Механические свойства легких сплавов зависят от вида изготавливаемых из них полуфабрикатов (листы, профили, панели, трубы), от их размеров, а также способа механической и термической обработки. В зависимости от этих условий для каждого сплава механические свойства могут изменяться в широком диапазоне.

Механические свойства некоторых алюминиевых сплавов приведены в таблице:

Технологические свойства алюминиевых сплавов.

1. Все сплавы допускают правку и гибку в холодном или нагретом состоянии.

2. Режутся механической, плазменной, лазерной или водяной резкой.

3. С повышением температуры до 80 – 100 0 С механические свойства сплавов значительно изменяются, что обуславливает повышенные требования к точности выдержки температурного режима.

4. Сплавы более чем сталь чувствительны к концентрации напряжений, поэтому нельзя допускать царапин, рисок, острых надрезов на поверхности деталей.

5. Сплавы имеют повышенную восприимчивость к наклепу в процессе холодной обработки давлением.

6. Сплавы не удовлетворяют условиям кислородной резки (Температура воспламенения металла выше температуры его плавления).

7. К недостаткам алюминиевых сплавов относятся более значительные по величине, чем при сварке стальных конструкций, сварочные деформации. Основными причинами этого являются в 2 раза более высокие, чем у стали коэффициенты теплопроводности и линейного расширения и в 3 раза меньший модуль нормальной упругости.

Сортамент материалов из алюминиевых сплавов включает листы, профили и прессованные панели. Листы из алюминиевых сплавов получают прокаткой, а профили и панели – прессованием. Прессованные профили изготавливают из заготовки – слитка, предварительно нагретого в печи и вложенного в контейнер пресса. Слиток продавливают сквозь матрицу, имеющую отверстия по контуру прессуемого профиля. Процесс прессования обеспечивает высокие механические свойства полуфабрикатов.

Алюминиевые литейные сплавы

Сплавы алюминиевые литейные. Зарубежные аналоги

По назначению конструкционные алюминиевые литейные сплавы можно условно разбить
на следующие группы:

  1. сплавы, отличающиеся высокой герметичностью: АК12 (АЛ2)*, АК9ч (АЛ4), АК7ч (АЛ9), АК8МЗч (ВАЛ8), АК7пч (АЛ9-1), АК8л (АЛ34), АК8М (АЛ32);
  2. сплавы высокопрочные, жаропрочные: АМ5 (АЛ 19), АК5М (АЛ5), АК5Мч (АЛ5-1), АМ4, 5 Кд (ВАЛ10);
  3. сплавы коррозионно-стойкие: АМч11 (АЛ22), АЦ4Мг (АЛ24), АМг10 (АЛ27), АМг10ч (АЛ27-1).
Читать еще:  Можно ли заряжать литиевые батарейки

* Здесь и далее в скобках приведены старые обозначения алюминиевых литейных сплавов.

По химическому составу в зависимости от основного легирующего компонента алюминиевые литейные сплавы подразделяют на пять групп:
I — на основе системы Аl-Si-Mg;
II — на основе системы Аl-Si-Cu;
III — на основе системы Аl-Cu;
IV — на основе системы Аl-Mg;
V — на основе системы Аl — прочие компоненты.

Алюминиевые литейные сплавы по стандарту обозначаются буквой А в начале марки, затем приводятся обозначения основных элементов следующими буквами: К кремний, Мг — магний, М — медь, Мц — марганец, Ц — цинк, Кд — кадмий, Н — никель.

Цифры после букв указывают среднее содержание элемента в процентах. Буквы в конце
марки обозначают:

  • ч — чистый;
  • ич — повышенной чистоты;
  • оч — особой чистоты;
  • л -литейные сплавы;
  • с — селективный.

Рафинированные сплавы в чушках обозначают буквой р, которую ставят после обозначения марки сплава. Сплавы, предназначенные для изготовления изделий пищевого назначения, обозначают буквой П, которую также ставят после обозначения марки сплава.

Алюминиевые литейные сплавы в чушках (металлошихта) и в отливках изготовляют для нужд народного хозяйства и на экспорт по ГОСТ 1583-93.

Для изготовления изделий пищевого назначения применяют сплавы АК7, АК5М2, АК9, АК12.

Применение других марок сплавов для изготовления изделий и оборудования, предназначенных для контакта с пищевыми продуктами и средами, в каждом отдельном случае должно быть разрешено органами здравоохранения.

В алюминиевых сплавах, предназначенных для изготовления изделий пищевого назначения, массовая доля свинца должна быть не более 0,15 %, мышьяка — не более 0,015 %, цинка — не более 0,3 %, бериллия — не более 0,0005 %.

В алюминиевых сплавах, предназначенных для изготовления изделий пищевого назначения, массовая доля свинца должна быть не более 0,15 %, мышьяка — не более 0,015 %, цинка — не более 0,3 %, бериллия — не более 0,005 %.

Аналоги алюминиевых литейных сплавов по ГОСТ 1583-93, стандартам США, Германии, Японии и Франции (табл. 97) подобраны путем сравнения массовой доли основных компонентов.

При этом учтено следующее: наличие примесей, способы литья, режимы термической обработки, механические свойства и области применения.

Ссылка на основную публикацию
Adblock
detector