C-triada.ru

Строительный журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Кол во энергии формула

Кол во энергии формула

а) Энергия электрического тока.

Для создания электрического тока в цепи источник должен обладать необходимой энергией.

Величина этой энергии определяется по формуле:

или

Где: W – энергия электрического тока, Вт·ч

U – напряжение на зажимах цепи, В.

R – сопротивление цепи, Ом.

t – время протекания тока, час.

б) мощность электрического тока

Различные источники электрической энергии могут за один и тот же промежуток времени выдавать различное количество электрической энергии.

Способность источника выдавать в единицу времени определенное количество электрической энергии, а потребитель, соответственно, – потреблять эту энергию характеризуется мощностью источника (потребителя).

Значение мощности электрического тока определяется из выражения:

или

Где: W – энергия электрического тока, Вт·ч

t — время работы источника (потребителя), час.

Р – мощность источника (потребителя), Вт.

U – напряжение, В

R – сопротивление цепи, Ом.

Мощность, развиваемая источником тока во всей цепи, называется полной мощностью .

Она определяется по формуле:

где: Pобщ — полная мощность, развиваемая источником тока во всей цепи, Вт;

Е — э. д. с. источника, В;

I — величина тока в цепи, А.

В общем виде электрическая цепь состоит из внешнего участка (нагрузки) с сопротивлением R и внутреннего участка с сопротивлением R (сопротивлением источника тока).

Заменяя в выражении полной мощности величину э. д. с. через напряжения на участках цепи, получим

Величина UI соответствует мощности, развиваемой на внешнем участке цепи (нагрузке), и называется полезной мощностью Pпол=UI

Величина UoI соответствует мощности, бесполезно расходуемой внутри источника, её называют мощностью потерь Po = UoI.

Таким образом, полная мощность равна сумме полезной мощности и мощности потерь

в) Коэффициент полезного действия электрической цепи

Отношение полезной мощности к полной мощности, развиваемой источником, называется коэффициентом полезного действия, сокращенно к. п. д.,и обозначается η

Из определения следует:

При любых условиях коэффициент полезного действия η ≤ 1.

Единица измерения энергии

Энергия — это физическая величина служащая мерой разных форм движения и взаимодействия материи, мерой перехода разных форм материи.

Энергия отображает способность физической системы к совершению работы, при этом работа является мерой изменения энергии. Из этого следует, что работа и энергия имеют одинаковые единицы измерения.

Единицы измерения энергии в Международной системе единиц

В международной системе единиц (СИ) джоуль (Дж) — единица измерения энергии и работы. Исходя из механического определения работы:

один джоуль — это работа ($A$), которую совершает сила ($overline$) в один ньютон при перемещении ($overline$) точки приложения силы в один метр:

[1 Дж=1 Нcdot 1 м.]

Джоуль не является основной единицей системы СИ. Через основные единицы джоуль легко выразить, используя механическое определение работы и единицы измерения соответствующих величин:

Такую же размерность можно получить, если использовать определение энергии вида:

где $c$ — скорость света; $m$ — масса тела. Исходя из выражения (2), имеем:

И так, мы убедились, что джоуль — единица измерения энергии. Насколько велик джоуль можно понять, если решить простую задачу: тело массой 2 кг движется со скоростью 1$frac<м><с>$ , какова его кинетическая энергия? Вычислим кинетическую энергию ($E_k$) нашего тела используя ее определение:

Единицы измерения энергии в других системах единиц

В системе СГС (сантиметр, грамм, секунда) энергия (и работа) измеряются в эргах (эрг). При этом одни эрг равен:

Читать еще:  Как почистить стиральную машину автомат лимонной кислотой

[1 эрг=1 динcdot 1 см.]

В технических расчетах встречается такая единица измерения энергии как килограммометр (кгм) или килограмм силы (кгс) на метр (м): (кгсм). При этом считают, что:

[1кгсм=1 кгсcdot 1 м=9,81 Дж.]

При расчетах тепла часто в качестве единицы измерения энергии используют калорию. Калорию определяют как:

Гигакалорию (Гкал) применяют в теплоэнергетике, коммунальных хозяйствах, система отопления.

Энергию можно выражать в киловатт часах:

[1 кВтcdot ч=3,6cdot <10>^5Дж.]

В основном данную единицу измерения используют в электроэнергетике.

В атомной и квантовой физике применяют такую единицу измерения энергии как электрон-вольт (эВ). При этом полагают, что:

Электрон — вольт — это энергия, которую приобретает частица, имеющая элементарный заряд (заряд электрона), если она перемещается между точками поля разность которых 1 В:

Примеры задач с решением

Задание. Какое количество теплоты выделится при полном сгорании древесного угля, масса которого составляет $m=$1 кг. Переведите полученный ответ в калории.

Решение. Количество теплоты $(Q)$, выделяемое при сгорании угля, найдем, используя формулу:

где $r=2,7cdot <10>^7frac<Дж><кг>$ — удельная теплота сгорания древесного угля. Можно проводить вычисления:

[Q=2,7cdot <10>^7cdot 1=2,7cdot <10>^7left(Джright).]

Задача решена в системе СИ. Используя соотношение:

переведем полученный результат в калории:

Ответ. $Q=6,4cdot <10>^7$ кал

Задание. Вычислите количество энергии необходимое для превращения $m=$100 г воды в пар при температуре, равной $t=$1000С. Запишите ответ в СГС.

Решение. Энергия $(E)$, необходимая для перехода жидкости в пар равна количеству теплоты (Q), которое должно получить масса этого вещества при парообразовании:

Теплоту парообразования найдем как:

[Q=lambda m left(2.2right),]

где $lambda =2,3cdot <10>^6frac<Дж><кг>$ — удельная теплота парообразования воды. Вычислим искомую энергию, учитывая (2.1) и (2.2):

[E=2,3cdot <10>^6cdot 0,1=2,3cdot <10>^5left(Джright).]

Эрг — единица измерения энергии в системе СГС, при этом:

Ответ. $E=2,3cdot <10>^ <12>эрг$

Закон Джоуля-Ленца: определение, формулы

Мы ежедневно пользуемся электронагревательными приборами, не задумываясь, откуда берётся тепло. Разумеется, вы знаете, что тепловую энергию вырабатывает электричество. Но как это происходит, а тем более, как оценить количество выделяемого тепла, знают не все. На данный вопрос отвечает закон Джоуля-Ленца, обнародованный в позапрошлом столетии.

В 1841 году усилия английского физика Джоуля, а в 1842 г. исследования русского учёного Ленца увенчались открытием закона, применение которого позволяет количественно оценить результаты теплового действия электрического тока [ 1 ]. С тех пор изобретено множество приборов, в основе которых лежит тепловое действие тока. Некоторые из них, изображены на рис. 1.

Рис. 1. Тепловые приборы

Определение и формула

Тепловой закон можно сформулировать и записать в следующей редакции: «Количество тепла, выработанного током, прямо пропорционально квадрату приложенного к данному участку цепи тока, сопротивления проводника и промежутка времени, в течение которого электричество действовало на проводник».

Обозначим символом Q количество выделяемого тепла, а символами I, R и Δt – силу тока, сопротивление и промежуток времени, соответственно. Тогда формула закона Джоуля-Ленца будет иметь вид: Q = I 2 *R*Δt

Согласно законам Ома I=U/R, откуда R = U/I. Подставляя выражения в формулу Джоуля-Ленца получим: Q = U 2 /R * Δt ⇒ Q = U*I*Δt.

Выведенные нами формулы – различные формы записи закона Джоуля-Ленца. Зная такие параметры как напряжение или силу тока, можно легко рассчитать количество тепла, выделяемого на участке цепи, обладающем сопротивлением R.

Читать еще:  Что нужно для газового резака

Дифференциальная форма

Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax) 2 и в начале пробега (mu 2 )/2 , то есть

Здесь u скорость хаотического движение (векторная величина), а υmax – максимальная скорость электрического заряда в данный момент времени.

Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение 2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:

Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент, E – напряжённость поля.

Интегральная форма

Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:

гдеR – полное сопротивление проводника.

Учитывая, чтоU = I×R, из последней формулы имеем:

Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:

Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.

Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.

Физический смысл

Вспомним, как электрический ток протекает по металлическому проводнику. Как только электрическая цепь замкнётся, то под действием ЭДС движение свободных электронов упорядочивается, и они устремляются к положительному полюсу источника питания. Однако на их пути встречаются стройные ряды кристаллических решёток, атомы которых создают препятствия упорядоченному движению, то есть оказывают сопротивление.

На преодоление сопротивления уходит часть энергии движущихся электронов. В соответствии с фундаментальным законом сохранения энергии, она не может бесследно исчезнуть. Она-то и превращается в тепло, вызывающее нагревание проводника. Накапливаемая тепловая энергия излучается в окружающее пространство или нагревает другие предметы, соприкасающиеся с проводником.

На рисунке 2 изображёна схема опыта, демонстрирующего закон теплового действия тока, разогревающего участок провода в электрической цепи.

Рис. 2. Тепловое действие тока

Явление нагревания проводников было известно практически с момента получения электротока, но исследователи не могли тогда объяснить его природу, и тем более, предложить способ оценки количества выделяемого тепла. Эту проблему решает закон Джоуля-Ленца, которым мы пользуемся по сегодняшний день.

Практическая польза закона Джоуля-Ленца

При сильном нагревании можно наблюдать излучение видимого спектра света, что происходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучают тепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим, но можем ощутить своими тепловыми рецепторами.

Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.

Читать еще:  Как запенить труднодоступные места монтажной пеной

Проанализировав выражение U 2 /R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.

В борьбе с короткими замыканиями используют:

  • автоматические выключатели:
  • электронные защитные блоки;
  • плавкие предохранители;
  • другие защитные устройства.

Применение и практический смысл

Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным. Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочные аппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

Кол во энергии формула

а) Энергия электрического тока.

Для создания электрического тока в цепи источник должен обладать необходимой энергией.

Величина этой энергии определяется по формуле:

или

Где: W – энергия электрического тока, Вт·ч

U – напряжение на зажимах цепи, В.

R – сопротивление цепи, Ом.

t – время протекания тока, час.

б) мощность электрического тока

Различные источники электрической энергии могут за один и тот же промежуток времени выдавать различное количество электрической энергии.

Способность источника выдавать в единицу времени определенное количество электрической энергии, а потребитель, соответственно, – потреблять эту энергию характеризуется мощностью источника (потребителя).

Значение мощности электрического тока определяется из выражения:

или

Где: W – энергия электрического тока, Вт·ч

t — время работы источника (потребителя), час.

Р – мощность источника (потребителя), Вт.

U – напряжение, В

R – сопротивление цепи, Ом.

Мощность, развиваемая источником тока во всей цепи, называется полной мощностью .

Она определяется по формуле:

где: Pобщ — полная мощность, развиваемая источником тока во всей цепи, Вт;

Е — э. д. с. источника, В;

I — величина тока в цепи, А.

В общем виде электрическая цепь состоит из внешнего участка (нагрузки) с сопротивлением R и внутреннего участка с сопротивлением R (сопротивлением источника тока).

Заменяя в выражении полной мощности величину э. д. с. через напряжения на участках цепи, получим

Величина UI соответствует мощности, развиваемой на внешнем участке цепи (нагрузке), и называется полезной мощностью Pпол=UI

Величина UoI соответствует мощности, бесполезно расходуемой внутри источника, её называют мощностью потерь Po = UoI.

Таким образом, полная мощность равна сумме полезной мощности и мощности потерь

в) Коэффициент полезного действия электрической цепи

Отношение полезной мощности к полной мощности, развиваемой источником, называется коэффициентом полезного действия, сокращенно к. п. д.,и обозначается η

Из определения следует:

При любых условиях коэффициент полезного действия η ≤ 1.

Ссылка на основную публикацию
Adblock
detector