C-triada.ru

Строительный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как переделать трёхфазный двигатель в однофазный

Как из 220 Вольт сделать 380 В?

Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?

Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.

Теория

На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.

В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.

Рис. 1. Структура трёхфазного тока

Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.

Способы получения 380 Вольт из 220

Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:

  • с помощью электронного преобразователя напряжения;
  • путём применения трансформатора;
  • использованием трёх фаз;
  • используя трёхфазный двигатель в качестве генератора;
  • пользуясь конденсаторной схемой.

Преобразователь напряжения

Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.

Рис. 2. Преобразователь напряжения

Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.

Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).

Используя трансформатор

С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор. преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.

Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.

Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.

Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.

Использование 3-х фаз

Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.

При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.

Использование электродвигателя

Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.

Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.

Пример подключения фазосдвигающего конденсатора см. на рис. 3.

Рис. 3. Подключение пускового конденсатора

Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.

Рис. 4. Трёхфазный ток от электромотора

Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.

Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.

Электродвигатель в качестве генератора

Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор. В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).

Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для этого необходимо вращать вал с угловой скоростью 1500 об/мин.

Читать еще:  Подключение генератора фубаг к дому

Рис. 5. Трёхфазный двигатель в качестве генератора

В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.

Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин. можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.

Выводы

Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:

  • стабильные параметры тока;
  • безопасная эксплуатация;
  • обеспечение заявленной выходной мощности;
  • компактность установки.

Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.

Подключение электродвигателя 380В на 220В

Общие правила подключения электродвигателя через конденсатор.

Подключение электродвигателя 380В на 220В выполняется через конденсатор. Для такого подключения необходимо использовать бумажные (или пусковые) конденсаторы, при этом ВАЖНО чтобы номинальное напряжение конденсатора было больше либо равно напряжению сети (при этом рекомендуется что бы напряжение конденсатора было в 2 раза больше напряжения сети). Могут применяться конденсаторы следующих марок (типов):

МБГО, МБГЧ, МБГП, МБГТ, МБГВ, КБГ, БГТ, ОМБГ, K42-4, К42-19 и др.

Емкость конденсатора можно определить по формулам приведенным ниже, либо с помощью онлайн расчета емкости.

Первое, что необходимо сделать — это правильно соединить выводы обмоток электродвигателя. Как уже известно из статьи: схемы соединения обмоток электродвигателя обмотки электродвигателя можно соединить по схеме «звезда» (обозначается — Y) или по схеме «треугольник» (обозначается — Δ), при этом, как правило для подключения электродвигателя на 220В применяется схема «треугольник» , что бы определиться со схемой соединения обмоток необходимо посмотреть паспортные данные электродвигателя на прикрепленном к нему шильдике:

Запись: «Δ/ Y 220/380V» обозначает, что для подключения данного электродвигателя на 220В необходимо соединить его обмотки по схеме «треугольник», а для подключения на 380В — по схеме «звезда», как это сделать читайте здесь.

Второе, с чем необходимо определиться — это как будет производиться запуск электродвигателя, под нагрузкой (когда уже в момент запуска электродвигателя к его валу приложена нагрузка и он не может свободно вращаться) либо без нагрузки (когда вал электродвигателя в момент запуска свободно вращается, например наждак, вентилятор, циркулярная пила и т.п.).

При запуске двигателя без нагрузки применяется 1 конденсатор который называется рабочим, а при необходимости запуска двигателя под нагрузкой в схеме, помимо рабочего, дополнительно применяется 2-ой конденсатор который называется пусковым, он включается только в момент запуска.

Разберем схемы подключения электродвигателя 380 на 220 для обоих случаев:

Схемы подключения электродвигателя через конденсатор.

1) Подключение электродвигателя через конденсатор по схеме «треугольник», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «треугольником» рассчитывается по формуле:

Cр=4800 * Iн/Uс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В схеме для включения электродвигателя применяется однополюсный автоматический выключатель, однако его использование необязательно, можно включать электродвигатель напрямую в сеть через розетку используя обычную штепсельную вилку или, например, включать его через обычный выключатель освещения.

2) Подключение электродвигателя через конденсатор по схеме «звезда», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «звездой» рассчитывается по формуле:

Cр=2800 * Iн/Uс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В случае если запуск двигателя 380 на 220 Вольт происходит под нагрузкой, в схеме дополнительно должен применяться пусковой конденсатор иначе силы момента на валу электродвигателя не хватит для его раскрутки и двигатель не сможет запуститься.

Пусковой конденсатор подключается параллельно рабочему и должен включаться только в момент запуска двигателя, после того как двигатель наберет обороты его необходимо отключать.

Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего.

Cп= (2,5…3) * Cр ; мкф

При данной схеме для запуска электродвигателя необходимо нажать и держать кнопку SB, после чего подать напряжение включив автоматический выключатель, как только двигатель запустится кнопку SB необходимо отпустить. В качестве кнопки так же можно использовать обычный выключатель.

Однако лучшим вариантом для подключения электродвигателя 380 на 220 является использование ПНВС-10 (пускатель нажимной с пусковым контактом):

Кнопки «пуск» в этих пускателя имеют 2 контакта один из них при отпускании кнопки «пуск» размыкается отключая пусковой конденсатор, а второй остается замкнутым и через него подается напряжение на электродвигатель через рабочий конденсатор, отключение производится кнопкой «стоп».

Реверс электродвигателя подключенного на 220 Вольт через конденсатор.

Итак, из схем приведенных выше следует, что при любом способе соединения обмоток (звезда или треугольник) в клеммной коробке двигателя остается три точки для его подключения к сети, условно: на первый вывод подключается ноль, на второй — фаза, а на третий подается фаза через конденсатор, но что делать если двигатель при запуске начал вращаться не в ту сторону в которую необходимо? Что бы изменить направление вращения двигателя подключенного через конденсатор необходимо просто переключить фазный провод с одного вывода электродвигателя на другой, а нулевой провод при этом оставить на том же выводе, т.е. условно: ноль оставить на первом выводе, фазу подать на третий, а на второй подать фазу через конденсатор.

Читать еще:  Как выбрать хорошую посудомоечную машину

Т.к. переключение выводов в клеммной коробке занимает определенное время, то в случае необходимости часто менять направление вращения конденсаторного электродвигателя лучше применять схему подключения через однополюсный пакетный переключатель на 2 направления:

При такой схеме в положении пакетного выключателя «0» двигатель будет отключен, а при положениях «1» и «2» запускаться по часовой либо против часовой стрелки.

Использование группы (блока) конденсаторов.

При подключении электродвигателя через конденсатор очень важно как можно точнее подобрать его емкость. Чем ближе будет значение фактической емкости конденсатора к расчетной тем более оптимальным будет сдвиг вектора напряжения относительно вектора тока, что в свою очередь даст более высокие показатели момента на валу двигателя и его КПД.

Например: согласно расчету необходимая емкость рабочего конденсатора составила 54 мкФ, при этом найти конденсатор подходящей емкости не удается, в таком случае наиболее целесообразным вариантом является использование группы параллельно соединенных конденсаторов (конденсаторного блока).

Как известно, при параллельном соединении конденсаторов их емкость суммируется, таким образом, что бы получить нужные нам 54 мкФ можно использовать 2 параллельно соединенных конденсатора — на 40 и на 14 мкФ (40+14=54), либо любое другое количество конденсаторов суммарная емкость которых будет давать нужное значение, например 30, 20 и 4 мкФ:

Примечание: Все конденсаторы в группе должны быть одного типа, иметь одинаковое номинальное напряжение и частоту.

Подробнее о схемах подключения конденсаторов и расчета их характеристик читайте в статье: Схемы соединения конденсаторов — расчет емкости.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Трёхфазный двигатель – в однофазную сеть

Пожалуй, наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть при отсутствии питающего напряжения

380 в – это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены “треугольником” (см. рис. ниже, вариант 2), т. к. именно это соединение даст минимальные потери мощности 3х-фазного двигателя при включении его в сеть

Мощность, развиваемая трехфазным электродвигателем, включенным в однофазную сеть с такой схемой соединения обмоток может составлять до 75% его номинальной мощности. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме.

На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Однако, исполнение клеммной коробки электродвигателя может отличаться от показанного ниже – вместо клеммных колодок, в коробке может располагаться два разделённых пучка проводов (по три в каждом).

Эти пучки проводов представляют собой “начала” и “концы” обмоток двигателя. Их необходимо «прозвонить», чтобы разделить обмотки друг от друга и соединить по нужной нам схеме “треугольник” – последовательно, когда конец одной обмотки соединяется с началом другой т. д (С1-С6, С2-С4, С3-С5).

При включении трёхфазного электродвигателя в однофазную сеть, в схему “треугольник” добавляются пусковой конденсатор Сп, который используется кратковременно (только для запуска) и рабочий конденсатор Ср.

В качестве кнопки SB для запуска эл. двигателя небольшой мощности (до 1,5 кВт) можно использовать обычную кнопку “ПУСК”, применяемую в цепях управления магнитных пускателей.

Для двигателей большей мощности стоит заменить её на коммутационный аппарат помощнее – напр, автомат. Единственным неудобством в этом случае будет необходимость ручного отключения конденсатора Сп автоматом после того как электродвигатель наберёт обороты.

Таким образом, в схеме реализована возможность двухступенчатого управления электродвигателем, уменьшая общую ёмкость конденсаторов при “разгоне” двигателя.

Если мощность двигателя невелика (до 1 кВт), то запустить его можно будет и без пускового конденсатора, оставив в схеме лишь рабочий конденсатор Ср.

Рассчитать ёмкость рабочего конденсатора можно формулой:

  • С раб = 4800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “треугольник”.
  • С раб = 2800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “звезда”.

Это наиболее точный способ, требующий, однако, измерения тока в цепи электродвигателя. Зная номинальную мощность двигателя, для определения ёмкости рабочего конденсатора лучше воспользоваться следующей формулой:

С раб = 66·Р ном, мкФ, где Р ном – номинальная мощность двигателя.

Упростив формулу, можно сказать, что для работы трёхфазного электродвигателя в однофазной сети, ёмкость конденсатора на каждые 0,1 кВт его мощности должна составлять около 7 мкФ.

Так, для двигателя мощностью 1,1 кВт ёмкость конденсатора должна составлять 77 мкФ. Такую ёмкость можно набрать несколькими конденсаторами, соединёнными друг с другом параллельно (общая ёмкость в этом случае будет равна суммарной), используя следующие типы: МБГЧ, БГТ, КГБ с рабочим напряжением, превышающим напряжение в сети в 1,5 раза.

Рассчитав ёмкость рабочего конденсатора можно определить ёмкость пускового – она должна превышать ёмкость рабочего в 2-3 раза. Применять конденсаторы для запуска следует тех-же типов, что и рабочие, в крайнем случае и при условии очень кратковременного запуска можно применить электролитические – типов К50-3, КЭ-2, ЭГЦ-М, рассчитанных на напряжение не менее 450 в.

Как подключить трёхфазный двигатель к однофазной сети.

подключение двигателя 380 на 220 вольт

правильный подбор конденсаторов для электродвигателя

Запуск 3х фазного двигателя от 220 Вольт

Запуск 3х фазного двигателя от 220 Вольт

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Читаем подробно далее

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Рном ,

где С — емкость конденсатора, мкФ, Рном — номинальная мощность электродвигателя, кВт.

Читать еще:  Как точат керамические ножи

То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (Ср) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.

Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором Сп

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

Ссылка на основную публикацию
Adblock
detector