Как определить температуру металла - Строительный журнал
C-triada.ru

Строительный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как определить температуру металла

Как определить температуру металла

Добрый день, всем!

Вижу как люди часто не имеют представление о высоте температуры при нагреве металла.

Для точного определения температуры можно использовать специальные маркеры, термоиндикаторные карандаши. На контролируемую поверхность наносят метку термоиндикаторным карандашом соответствующего номинала. Метка получается сухой и рассыпчатой. Когда температура поверхности достигнет значения, соответствующего номиналу карандаша, метка расплавляется и превращается в глянцевый мазок. Точность -/+ 1º по Цельсию.

С уважением, Душан

Я тоже использую такой способ определения температур поверхностей, но меня интересуют температуры ниже 130 градусов по Цельсию.

Как это работает: http://chemistry-chemists.com/N5/19-64.pdf
Материал старый, но добротный. В части термокарандашей с тех пор ничего не изменилось, и даже упоминаемая Tempil Corp не поменяла название: http://www.tempil.com/products/tempstik-test-kits/

Я тоже использую такой способ определения температур поверхностей, но меня интересуют температуры ниже 130 градусов по Цельсию.

Насколько я знаю, номинальная температура, для термоиндикаторные карандаши, начинается от 38º по Цельсию. Тем не менее, существуют устройства, лазерные измерительные температуры, бесконтактный ИК, работающих от -20º до 600º по Цельсию, с разрешающей способностью от 0.5º по Цельсию.

С уважением, Душан

Кстати точность определения не 1* ,а 1% от заявленной температуры.Точность в принципе,все равно, довольно высокая.

Оффтопик: именно так написано в сайте, но 1% от температуры неправильно, не имеет физического смысла. Правильно — погрешность во столько-то градусов, как у Душана Владимировича.

Температура — не аддитивная величина, и 20 градусов в любой шкале не в два раза больше, чем 40. Даже если шкала абсолютная. Можно лишь сказать, что температура в 20 градусов ниже, чем температура в 40 градусов. Я уже писал по поводу неаддитивности температуры несколько по другому поводу: http://forums.balancer.ru/tech/forum/2012/12/t87338,4—kalorimetry-i-kalorimetriya.html

Не уверен,что возможно использовать для мелких деталей.

Конечно, является возможным использовать карандаши с мелкие части, косвенно, я размещаю мелкие детали на металлической пластине, на которой я размещаю метку. Все вместе, это затем идет внутри муфельной печи, в которой температура контролируется микропроцессором, с помочи термопара типа ‘K’ и/или типа ‘N’.

С уважением, Душан

Можно лишь сказать, что температура в 20 градусов ниже, чем температура в 40 градусов.

Сегодня можно такое утверждать. А вот во времена Цельсиуса по шкале его имени было наоборот — лед таял при 100 градусов, а вода кипела при 0. И температура в 40 градусов была ниже, чем в 20
Перевернул шкалу Линней, уже после смерти Цельсиуса.

Я должен сказать, что я не видел в спецификации заявив номинальную температуру в процентах, только в градусах, как показано ниже.

Причем, не совсем ясно сказано, на чего относится +/- 1º, нажмите здесь (http://www.markingpendepot.com/tempilstikstemperatureindicatormarkers.aspx).

С уважением, Душан

Мне любопытно потом, на чего реально относится +/- 1º. Это противодействие другой заявлении, и без сомнения, это свидетельствует о точности. Мой английский является безупречной, я вырос на двух языках.

Возможно, просто коммерческая подача, чтобы заманить кого-то, чтобы купить продукт. 🙁

С уважением, Душан

Одиссей, Душан Владимирович, это весьма широко распространенная ошибка. Я ее встречал даже в весьма авторитетных источниках. В Европейской фармакопеи, начиная с 5 издания такой ляп есть, и кочует до сегодняшнего, актуального варианта. Убедиться, что такое нормирование ошибочно можно очень легко, рассмотрев три разные и распространенные температурные шкалы — Кельвина, Цельсия и Фаренгейта.

Допустим, что термометр (или термоиндикатор — нет разницы) с заявленной погрешностью 1% при температуре 100 градусов Цельсия. Это 1 градус.
В шкале Кельвина эта температура будет уже 373 К, и погрешность будет 3.7 кельвина, что равно 3.7 градусов Цельсия.
В шкале Фаренгейта — 212 градусов, соответственно погрешность будет 2.1 градус Фаренгейта, что равняется 1.16 градусов Цельсия.

А если принять дельта тэ (температурный интервал), все будет в порядке: 1 градусу Цельсия соответствует 1 кельвин и 1.8 градус по Фаренгейту.

Убедиться, что такое нормирование ошибочно можно очень легко, рассмотрев три разные и распространенные температурные шкалы — Кельвина, Цельсия и Фаренгейта.

Мне полностью ясно и не нужно убедиться, я вырос с обоими, с Imperial системы и с метрики. Также жил и работал через переход с Imperial на метрический системы, когда Австралия пошла путем принятия системы SI. Так что я использовал все трех системы измерения температур, даже сегодня использую Imperial системы, по случаю старых инструментов, или когда они были сделаны для американского рынка .

С уважением, Душан

Я не согласен 🙂
Измерение температуры твердой поверхности с применением датчика типа термометра сопротивления, термистора или термопары легко может дать погрешность в десятки и даже в сотни градисов. Дело в термическом сопротивлении на границе раздела фаз деталь-датчик. Если просто прикоснуться датчиком к поверности, термосопротивление будет большим. Пятно контакта — несколько точек, и нагрев датчика будет медленным. Кроме того, датчик будет охлаждаться воздухом. В результате недогрев может составить заметную величину. Несколько лет назад на работе у нас произошел серьезный спор то теме и я поставил наглядный эксперимент: в алюминиевом бачке с ТЭНом залили воду, включили нагрев и дождались интенсивного кипения. По барометру вода должна была кипеть при температуре 99.1 градусов Цельсия. Ни один датчик не показал температуру стенки бачка выше 95 градусов (а некоторые показывали и 85) а термоиндикатор tempilstick 206 показал, что температура выше 97 градусов Цельсия (206°F). Следующий же на 213°F (101°С) не изменился.

Для правильного измерения температуры твердой поверхности нужно иметь оечнь плотный контакт между датчиком и поверхность. Именно тут термокарандаши, термолаки и краски вне конкуренцик. А если нужно определить поле температур, то альтернатива термовизора — именно карандаши и многопереходные краски.

Термопар или ТСП можно использовать только для определенного объекта, и калибровка их весьма трудоемка. Изменился объект, или температура, и погрешность уже неизвестна.

Для пластин, нагреваемые в печи, на горелке, на плитке термоиндикатор — почти единственный (дешевый) способ определить температуру с точностью в нескольких градусов. Альтернатива — термовизор. Термопара дасть видимость точного измерения: будет воспроизводимо (если не пойдут наводки от печи), с тремя значащими, и. неверно 🙂

А в районе 100 градусов я лучше плюну на поверхность валка, чем буду смешить рабочих мультимером.
Я серьезно 🙂

.. но как инженер механик я не смог придумать ему применение, особенно исходя из рекламируемой точности измерения температуры, и как правило,

Я пороховик-технолог, скоро 30 лет стажа, и постоянно применяю. Хотя в заводской лаборатории у меня есть намного более точные средства измерения, в том числе и неофициально откалиброванный по МПТШ первичный эталон температуры 🙂

Читать еще:  Как подключить приставку к телевизору supra

А термопар мне покупать необязательно — могу и сам варить. Несколько раз чинил перегоревшие промышленые датчики, потом сдавал в метрологию и они проходили поверку. Кроме того, приходится варить малогабаритные термопары W-Re5/W-Re10. Их и не купить, термоэлектроды в виде проволоки 0.07 у меня еще со студенчестве.

Не в порядке хвастания, а для убедительности 😉

. ( тоже в качестве похвастаться))).

Уели :)))))))
А температура поверхности мне надо определять на рабочих поверхностей валков. Подробнее: http://www.balancer.ru/g/p3147348

К сожалению, по теме термообработки часовых деталей я слабак. Дальше свечки не пошел, и в основном калю и отпускаю кетайческие отвертки. С полгода назад и это перестал делать: Anth мне презентовал ЗиМовские, и с тех пор только ими работаю 🙂
Ремонты я делаю, как в фирменном сервисе — меняю детали 🙂 правда из хлама, а не на новые. Ремонтировать и точить детали я не умею. Но мне здесь интересно, я научился перебирать и настраивать простые часики, а когда обсуждение попадает в мою профессиональную сферу, получаются вот такие лирические отклонения.

Убедиться, что такое нормирование ошибочно можно очень легко, рассмотрев три разные и распространенные температурные шкалы — Кельвина, Цельсия и Фаренгейта.

Привет!
Сам я инженер-металлург и имею некоторое понятие о температурах.;)
Возможно в научных журналах такое недопустимо,но здесь обсуждался конкретный товар,продаваемый на сайте компании. И этот товар- индикатор.
Думаю, согласитесь ,что если в интервалах,скажем до 300*С ,каждый градус на счету:), то в интервале,300-600*С,такая точность ни к чему ,+/-5*С- нормально. Соответственно и при калибровке (производстве) этих самых индикаторов,удобнее выдерживать точность дифференцированно( уж простите за словечко).Да и мне ,как потребителю,удобнее .
По Вашему же получается ,что производитель должен выдержать одинаковую точность по всей гамме продукта (около 100 наименований),что не возможно,да и не нужно.
Или ,как вариант, в каждой строке должна появиться информация о точности каждого индикатора в отдельности,что тоже как то перегружает:)
Одиссей.

Правила закалки металла в домашних условиях

Конструирование механизмов тесно связано с изготовлением деталей из металла. Токарные, фрезерные, сварочные работы – без них в этом деле никуда. Но есть еще один важный момент, когда нужно изменить физические свойства металла – повысить его прочность. Необходим такой процесс при создании ответственных узлов, рассчитанных на большие нагрузки. Закалку металла в домашних условиях проводят, строго соблюдая технологический процесс.

Что подразумевают под закалкой

Если взять обычный гвоздь, зажать в тисках и попробовать согнуть его молотком, то это легко получится – гвоздь изготовлен из пластичной стали. Но если тот же эксперимент провести со сверлом – последнее лопнет при ударе молотка. Результат говорит о том, что сверло подвергали определенной обработке по увеличению его прочности, иначе оно не смогло бы пробуривать отверстия в плотном материале. Что же такое закалка металла?

Закалка стали

Говоря научным языком, закалкой металла называют технологический процесс, при котором кристаллическая решетка закаливаемого материала приобретает определенную структуру. Это возможно при воздействии на изделие высокими температурами до состояния его накаливания и дальнейшее охлаждение в масляной или водной среде. Сам процесс подразумевает множество нюансов температурного режима, длительности обработки металла.

Важно понимать, что увеличение твердости металла при закалке (полиморфном превращении) ведет к повышению его хрупкости. Поэтому проводить механические преобразования закаленных сталей (изгибание, выкручивание) можно только после предварительного нагрева их до определенной температуры.

Какие виды закалок бывают

Если брать стали, то малоуглеродистые из них вообще не поддаются термическому преобразованию. Цветные металлы закаливаются иначе, чем черные – во внутренней структуре первых не происходит полиморфное превращение.

Для точной выдержки технологического процесса закалки разработаны специальные таблицы по каждой марке металла. В остальном, если брать конкретную деталь, то под видами закалки понимают:

Виды термической обработки стали

  • Частичную термическую обработку, где воздействию подвергают только определенный элемент детали, например, лезвие ножа;
  • Полную термическую обработку, когда все изделие помещают в печь, раскаляют, а затем охлаждают до первоначального состояния.

По количеству охладителей, которые используют для остужения детали, бывают закалки с одним и двумя охладителями. В первом случае процесс одноступенчатый, с применением определенной жидкости для остужения заготовки из углеродистой либо легированной стали. Во втором процессе участвуют два охладителя, каждый из которых понижает температуру заготовки в своем режиме. Одновременно здесь происходит и отпуск металла.

В чем состоит процесс закалки

Чтобы закалить металл, необходимо выполнить такие основные этапы:

  • Нагрев до температур, позволяющих атомам кристаллической решетки быть подвижными и перестраиваться;
  • Охлаждение в определенной среде (вода, масло, воздух), позволяющее зафиксировать изменение структуры металла.

Инструкция по закалке металла

Осуществляя нагрев заготовки, необходимо следить за состоянием ее поверхности, а именно — за изменением цвета металла. Существует специальная шкала, где по цветовому оттенку можно приблизительно понять, до какой температуры текущего момента времени нагрета деталь. Ярко-красный оттенок говорит о том, что процесс происходит правильно. Следует не допускать появление на поверхности пятен, свидетельствующих о перекале и излишней хрупкости этих участков.

Среда, в которой охлаждают металл, исключительно зависит от его физических свойств и непосредственно влияет на результат термообработки. При неправильном подборе охладителя или времени выдержки вся процедура может не дать никакого результата, а иногда — ухудшить физико-механические показатели заготовки.

При каких температурах происходит закалка стали, что служит охлаждающей средой

Наиболее часто процессу закалки подвергают различные стали. Это связано с тем, что сталь является основным материалом при изготовлении механизмов и конструкций. Для каждой марки стали выведены свои оптимальные показатели, при которых происходит процесс закалки. Для марок быстрорежущих сталей можно сказать, что:

  • Сталь Р18 закаливается при температуре 1270 градусов по Цельсию, с дальнейшим охлаждением в масле;
  • Р9К5, Р9М4К8, Р6М5К5 – при 1230 градусах, с остыванием в том же охладителе;
  • Р6М5 – при 1220 градусах с охлаждением в масле;
  • Р2АМ9К5 – при 1200 градусах с тем же охладителем;
  • Р12Ф3 – 1250 градусов.

Для марок инструментальных легированных сталей показатели следующие:

  • Х – температура в пределах 830-850 градусов, среда охлаждения – масло;
  • ХВСГФ, 9ХС – 840-860, масло;
  • ХВГ, В2Ф – 820-840, для первой – масло, для второй – вода;
  • 13Х — 760-800, вода;
  • 11ХФ – 810-830, масло;
  • Х12, Х12МФ – 960-980, масло.
Читать еще:  Монтажные когти для деревянных столбов

Для марок инструментальных углеродистых сталей показатели следующие:

  • У7 – температура в пределах 800-820 градусов, охлаждение в воде;
  • У8 – 780-800, вода;
  • У10 – 770-800, вода;
  • У12 – 760-790, вода.

Способы закалки металла на дому

Чтобы осуществить закалку металла в домашних условиях, понадобится источник тепла и емкость с охлаждающей жидкостью. Источником тепла может служить открытый огонь костра, газовая горелка, электрическая печь специальной формы (муфельная печь). Ванночка или емкость должна быть глубиной, достаточной для полного погружения детали внутрь нее.

Закалка на открытом огне

Работу выполняют в следующей последовательности:

Значение цвета металла при закалке на открытом огне

  • Разводят костер и дожидаются большого образования горящих углей;
  • Наливают в одну емкость масло, в другую — воду;
  • По достижении пламенем ярко-малинового цвета раскладывают на углях металлические предметы, требующие закалки;
  • Используя таблицу нагрева по цветности, следят за состоянием накала металла;
  • По достижении требуемой температуры, при помощи клещей извлекают заготовки и быстрыми движениями опускают в жидкость;
  • Оптимальный режим охлаждения — с соблюдением периодичности три секунды, с постепенным увеличением интервала времени;
  • Когда металл утратил цвет, продолжают охлаждать его водой.

Закалка в муфельной печи

Муфельная печь – это электрический нагревательный прибор, напоминающий тоннель, вокруг которого расположена нихромовая электрическая спираль. Вся конструкция обмазывается огнеупорной глиной, задний конец тоннеля закрыт наглухо, передний имеет дверцу, через которую внутрь печи можно заложить необходимые заготовки. Желательно дверцу снабдить смотровым окошком из огнеупорного стекла (для контроля процесса нагрева заготовки).

После достижение металлом необходимой температуры весь остальной процесс охлаждения происходит согласно описанию в разделе: «Закалка на открытом огне».

Температура кипения и плавления металлов. Температура плавления стали

Температура кипения и плавления металлов

В таблице представлена температура плавления металлов tпл, их температура кипения tк при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.

Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.

По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.

Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.

Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:

  • температура плавления алюминия 660,32 °С;
  • температура плавления меди 1084,62 °С;
  • температура плавления свинца 327,46 °С;
  • температура плавления золота 1064,18 °С;
  • температура плавления олова 231,93 °С;
  • температура плавления серебра 961,78 °С;
  • температура плавления ртути -38,83°С.

Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.

Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см 3 , то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.

Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.

Температура плавления стали

Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.

Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.

Молекулярная физика. Плавление и кристаллизация.

Переход вещества из твердого кристаллического состояния в жидкое называется плавлением. Чтобы расплавить твердое кристаллическое тело, его нужно нагреть до определенной температуры, т. е. подвести тепло. Температура, при которой вещество плавится, называется температурой плавления вещества.

Обратный процесс — переход из жидкого состояния в твердое — происходит при понижении температуры, т. е. тепло отводится. Переход вещества из жидкого состояния в твердое называется отвердеванием, или кристаллизацией. Температура, при которой вещество кристаллизуется, называется температурой кристаллизации.

Опыт показывает, что любое вещество кристаллизуется и плавится при одной и той же температуре.

На рисунке представлен график зависимости температуры кристаллического тела (льда) от времени нагревания (от точки А до точки D) и времени охлаждения (от точки D до точки K). На нем по горизонтальной оси отложено время, а по вертикальной — температура.

Из графика видно, что наблюдение за процессом началось с момента, когда температура льда была -40 °С, или, как принято говорить, температура в начальный момент времени tнач = -40 °С (точка А на графике). При дальнейшем нагревании температура льда растет (на графике это участок АВ). Увеличение температуры происходит до 0 °С — температуры плавления льда. При 0°С лед начинает плавиться, а его температура перестает расти. В течение всего времени плавления (т.е. пока весь лед не расплавится) температура льда не меняется, хотя горелка продолжает го­реть и тепло, следовательно, подводится. Процессу плавления соответствует горизонтальный учас­ток графика ВС. Только после того как весь лед расплавится и превратится в воду, температура снова начинает подниматься (участок CD). После того, как температура воды достигнет +40 °С, горелку гасят и воду начинают охлаждать, т. е. тепло отводят (для этого можно сосуд с водой по­местить в другой, больший сосуд со льдом). Температура воды начинает снижаться (участок DE). При достижении температуры 0 °С температура воды перестает снижаться, несмотря на то, что тепло по-прежнему отводится. Это идет процесс кристаллизации воды — образования льда (гори­зонтальный участок EF). Пока вся вода не превратится в лед, температура не изменится. Лишь после этого начинает уменьшаться температура льда (участок FK).

Читать еще:  Какое масло заливается в компрессор холодильника

Вид рассмотренного графика объясняется следующим образом. На участке АВ благодаря подводимому теплу средняя кинетическая энергия молекул льда увеличивается, и температура его повышается. На участке ВС вся энергия, получаемая содержимым колбы, тратится на разрушение кристаллической решетки льда: упорядоченное пространственное расположение его молекул сменяется неупорядоченным, меняется расстояние между молекулами, т.е. происходит перестройка молекул таким образом, что вещество становится жидким. Средняя кинетическая энергия моле­кул при этом не меняется, поэтому неизменной остается и температура. Дальнейшее увеличение температуры расплавленного льда-воды (на участке CD) означает увеличение кинетической энер­гии молекул воды вследствие подводимого горелкой тепла.

При охлаждении воды (участок DE) часть энергии у нее отбирается, молекулы воды движутся с меньшими скоростями, их средняя кинетическая энергия падает — температура уменьшается, вода охлаждается. При 0°С (горизонтальный участок EF) молекулы начинают выстраиваться в определенном порядке, образуя кристаллическую решетку. Пока этот процесс не завершится, температура вещества не изменится, несмотря на отводимое тепло, а это означает, что при отвер­девании жидкость (вода) выделяет энергию. Это как раз та энергия, которую поглотил лед, пре­вращаясь в жидкость (участок ВС). Внутренняя энергия у жидкости больше, чем у твердого тела. При плавлении (и кристаллизации) внутренняя энергия тела меняется скачком.

Металлы, плавящиеся при температуре выше 1650 ºС, называют тугоплавкими (титан, хром, молибден и др.). Самая высокая температура плавления среди них у вольфрама — около 3400 °С. Тугоплавкие металлы и их соединения используют в качестве жаропрочных материалов в самолетостроении, ракетостроении и космической технике, атомной энергетике.

Подчеркнем еще раз, что при плавлении вещество поглощает энергию. При кристаллизации оно, наоборот, отдает ее в окружающую среду. Получая определенное количество теплоты, выделяющееся при кристаллизации, среда нагревается. Это хорошо известно многим птицам. Неда­ром их можно заметить зимой в морозную погоду сидящими на льду, который покрывает реки и озера. Из-за выделения энергии при образовании льда воздух над ним оказывается на несколько градусов теплее, чем в лесу на деревьях, и птицы этим пользуются.

Плавление аморфных веществ .

Наличие определенной точки плавления — это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.

Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления — они не плавятся, а размягчаются. При нагревании кусок стекла, например, снача­ла становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса принимает форму того сосуда, в котором лежит. Эта масса сначала густая, как мед, затем — как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.

Причины этого лежат в коренном отличии строения аморфных тел от строения кристаллических. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению напоминают жидкости. Уже в твердом стекле атомы расположены беспорядочно. Значит, повы­шение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое—жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.

Теплота плавления .

Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое. Теплота плавления равна тому количеству теплоты, которое выделяется при кристалли­зации вещества из жидкого состояния. При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энер­гии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.

Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить 332 Дж энергии, а для того чтобы расплавить 1 кг свинца — 25 кДж.

Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.

Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают греческой буквой λ (лямбда).

Удельная теплота кристаллизации равна удельной теплоте плавления, поскольку при кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении. Так, например, при замерзании воды массой 1 кг выделяются те же 332 Дж энергии, которые нужны для превращения такой же массы льда в воду.

Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произвольной массы, или теплоту плавления, надо удельную теплоту плавления этого тела умножить на его массу:

Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой m, следует пользоваться той же формулой, но со знаком «минус»:

Теплота сгорания .

Теплота сгорания (или теплотворная способность, калорийность) — это количество теплоты, выделяющейся при полном сгорании топлива.

Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обыч­ное топливо (уголь, нефть, бензин) содержит углерод. При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.

Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.

Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива. Удельную теплоту сгорания обозначают буквой q и измеряют в джоулях на килограмм (Дж/кг).

Количество теплоты Q, выделяющееся при сгорании m кг топлива, определяют по формуле:

Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.

Ссылка на основную публикацию
Adblock
detector