C-triada.ru

Строительный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Для чего применяется диод

Применение диодов

Диоды являются одними из самых распространенных электронных компонентов. Они присутствуют практически во всех электронных приборах, которые мы ежедневно используем – от мобильного телефона до его зарядного устройства. В этой статье рассмотрим основные типы электронных схем, в которых диоды нашли свое применение.

1. Нелинейная обработка аналоговых сигналов

В связи с тем, что диоды относятся к элементам нелинейного типа, они применяются в детекторах, логарифматорах, экстрематорах, преобразователях частоты и в других устройствах, в которых предполагается нелинейная обработка аналоговых сигналов. В таких случаях диоды используют или как основные рабочие приборы – для обеспечения прохождения главного сигнала, или же в качестве косвенных элементов, например в цепях обратной связи. Указанные выше устройства значительно отличаются между собой и используются для разных целей, но применяемые диоды в каждом из них занимают очень важное место.

2. Выпрямители

Устройства, которые используются для получения постоянного тока из переменного называются выпрямителями. В большинстве случаев они включают в себя три главных элемента – это силовой трансформатор, непосредственно выпрямитель (вентиль) и фильтр для сглаживания. Диоды применяют в качестве вентилей, так как по своим свойствам они отлично подходят для этих целей.

3. Стабилизаторы

Устройства, которые служат для реализации стабильности напряжения на выходе источников питания, называются стабилизаторами. Они бывают разных видов, но каждый из них предполагает применение диодов. Эти элементы могут использоваться либо в цепях, отвечающих за опорные напряжения, либо в цепях, которые служат для коммутации накопительной индуктивности.

4. Ограничители

Ограничители – это специальные устройства, используемые для того, чтобы ограничивать возможный диапазон колебания различных сигналов. В цепях такого типа широко применяются диоды, которые имеют прекрасные ограничительные свойства. В сложных устройствах могут использоваться и другие элементы, но большинство ограничителей базируются на самых обычных диодных узлах стандартного типа.

5. Устройства коммутации

Диоды нашли применение и в устройствах коммутации, которые используются для того, чтобы переключать токи или напряжения. Диодные мосты дают возможность размыкать или замыкать цепь, которая служит для передачи сигнала. В работе применяется некоторое управляющее напряжение, под воздействием которого и происходит замыкание или размыкание. Иногда управляющим может быть сам входной сигнал, такое бывает в самых простых устройствах.

6.Логические цепи

В логических цепях диоды применяются для того, чтобы обеспечить прохождение тока в нужном направлении (элементы «И», «ИЛИ»). Подобные цепи используются в схемах аналогового и аналогово-цифрового типа. Здесь перечислены только основные устройства, в которых применяются диоды, но существует и много других, менее распространенных.

Светодиоды

Светодиоды представляют собой полупроводниковые диоды, которые излучают свет при прохождении через них электрического тока. Они могут излучать разные цвета и делятся на такие типы — 3 мм, 5мм, 8мм, SMD 0603, Top type, мигающий диод, диод с резистором, Star PCB, Emitter. В сравнении с традиционными лампами светодиоды обладают многими преимуществами – это экономичность, прочность, яркость света, долговечность, низкий нагрев в процессе работы. Что касается недостатков, то главным из них является цена, так как подобные приборы стоят достаточно дорого. Рассмотрим различные виды светодиодных устройств, которые чаще всего применяются на практике.

1. Одиночные светодиоды

Подобные устройства широко используются в самой разной аппаратуре в качестве лампочек индикации, которые чаще всего свидетельствуют о том, включен или выключен прибор. Кроме того, они применяются для освещения различных небольших пространств, например в автомобилях.

2. 7’Segment

Технология Seven-Segment Display с использованием светодиодов применяется в электронных часах, в различных измерительных приборах и в других технических средствах, которые предполагают отображение цифровой информации на дисплее. В таких целях светодиоды используются еще с 1910 года, но они не потеряли своей актуальности и сейчас. 7’Segment позволяет отображать простейшие данные на дисплее самым простым способом и с низкими энергозатратами.

3. Матрица светодиодов

Светодиодная матрица представляет собой определенное количество светодиодов, которые размещаются на одной площадке. Главные характеристики таких устройств это яркость и размеры. Большое количество применяемых диодов позволяет добиться высоких показателей освещения. Устанавливаются подобные матрицы чаще всего в специальных плафонах, которые могут использоваться в различных местах, например в салоне автомобиля, в его бардачке или в багажнике.

4. LED телевизоры

LED телевизоры – это телевизоры, принцип работы которых основывается на использовании светодиодов. Они дают возможность добиться хорошего качества изображения и позволяют экономить на электроэнергии. Благодаря небольшим размерам таких диодов, телевизионные экраны имеют значительно меньшую толщину, чем у традиционных моделей. Кроме того, подобные устройства характеризуются надежностью и достаточно большим сроком службы. Все телевизоры, изготовленные по этой технологии, имеют боковую подсветку экрана и подсветку за матрицей.

Как видим, несмотря на свою простоту, диоды нашли применение в самых разнообразных технических областях, и без их использования работа многих устройств весьма проблематична. Следует заметить, что диоды находят и новые сферы применения.

Особенности, назначение, устройство и принцип работы диода

Диод — это электронный элемент, который обладает различной проводимостью. Он изготовлен на полупроводниковой основе и предназначен для выполнения разнообразных действий с поступающими электрическими сигналами. Применяется это приспособление не только в промышленности, электронике, но и в повседневной жизни. Большинство современного оборудования имеет в своём составе несколько таких элементов.

Общие сведения

Прежде чем рассматривать, как работает диод, необходимо подробно изучить его устройство, разновидности и узнать, зачем он применяется. Это поможет лучше понять принцип действия и выбрать максимально эффективное приспособление для определённого оборудования.

Устройство диода

Диод (от англ. diode) выглядит просто и имеет конструкцию, состоящую из небольшого количества элементов. Это позволяет мастерам не приобретать дорогостоящие изделия, а изготавливать их своими руками. Самодельные приспособления хоть и стоят намного дешевле, но выполняют те же функции, что и покупные.

Так как диоды часто изображаются на электросхемах, то определение их параметров считается довольно важным мероприятием. Обозначением для этих элементов служит комбинация символов VD1, VD2 и так далее.

Схема диода предусматривает наличие следующих элементов:

  1. Корпус. Он представляет собой стеклянный, керамический или металлический вакуумный баллон.
  2. Два электрода (катод и анод). Они располагаются внутри баллона и используются для обеспечения эмиссии электронов. Чаще всего применяются электроды косвенного накала, которые имеют цилиндрическую форму, и обладают специальным слоем, испускающим электроны. В некоторых старых конструкциях можно встретить эти элементы в виде тонкой нити, накаливающейся в процессе работы приспособления.
  3. Подогреватель. Он находится внутри катода и устроен в виде проволоки, которая накаливается из-за прохождения электрического тока.
  4. Диодный кристалл. Для изготовления этого элемента применяется германий или кремний. Одна его часть проводит электричество и имеет недостаточное количество электронов, а вторая — избыток.
  5. P-n переход — область между первой и второй частью диодного кристалла.

Принцип действия

Принцип работы диода довольно простой и разобраться в нём сможет не только профессионал, но и новичок. Для этого не нужно иметь специальное образование или навыки работы с таким приспособлением, а достаточно обладать общим представлением об устройстве.

Читать еще:  Отличие пускового конденсатора от рабочего

Принцип действия диода:

  1. Электрический ток проходит через устройство и воздействует на катод диода.
  2. Из-за этого подогреватель постепенно накаляется, а электрод начинает испускать электроны.
  3. Следствием этого становится образование электрического поля между двумя электродами, которое является катализатором процесса притяжения электронов к аноду, обладающему положительным зарядом. Благодаря этому образуется эмиссионный ток.
  4. Пространственный отрицательный заряд, который появляется между двумя электродами, препятствует движению электронов к аноду. Из-за этого часть их меняет своё направление, и начинает двигаться к катоду.
  5. Попавшие на анод электроны образуют анодный ток, параметры которого соответствуют катодному.
  6. Если электрическое поле, возникшее между электродами, препятствует возвращению частиц на катод, то электродиод остаётся в запертом состоянии. Всё это приводит к размыканию цепи.

Разновидности приспособлений

Производители электронных элементов делают несколько типов диодов. Все они немного отличаются друг от друга, имеют различные свойства, а также используются для достижения определённых целей.

Диоды бывают:

  1. Выпрямительные. Это наиболее распространённый тип приспособлений, который используется в устройствах, способствующих преобразованию переменного тока промышленной частоты в постоянный.
  2. Высокочастотные. Большинство моделей современного оборудования функционируют при рабочей частоте в несколько гигагерц. В таких конструкциях применяются специальные диоды, рассчитанные на высокую частоту.
  3. Переключающие. Эти приспособления используются в тех схемах, где диод должен работать в различных режимах. В одном из них он оказывается смещённым в прямом направлении, а в другом — в обратном.
  4. Стабилитроны. Такие элементы применяются только в конструкциях, помогающих стабилизировать напряжение, поступающее к оборудованию.
  5. Варикапы. Они используются в параметрических усилителях и прочих подобных устройствах. С их помощью происходит коррекция частотной модуляции и автоматическая подстройка частоты.
  6. Диоды Шоттки. Назначение этого приспособления — малое падение напряжения при прямом включении. Область их применения ограничивается низковольтными электрическими цепями.
  7. Тиристоры (управляемые диоды). Они часто применяются в схемах, которые предназначены для плавного пуска двигателя, регулировки мощности или включения лампочки.
  8. Симисторы. Эта разновидность диодов используется для обеспечения работы систем, питающихся от переменного напряжения, так как способна пропускать электричество в обоих направлениях. Они представляют собой 2 тиристора, соединённые между собой.

Область применения

Диоды широко применяются по всему миру и входят в состав различных приспособлений. В большинстве случаев несколько таких элементов объединяются в общую конструкцию. Их количество выбирается исходя из типа и особенностей каждой схемы.

Использование диодов в электротехнике:

  1. Диодные мосты. В их составе может находиться от 4 до 12 диодов, которые последовательно соединены друг с другом. Они применяются для однофазных и трёхфазных схем, где выполняют функцию выпрямителей. В большинстве случаев такие диодные мосты устанавливаются на генераторах автомобилей. Благодаря им не только увеличивается надёжность устройства, но и уменьшаются его размеры.
  2. Диодные детекторы. Они представляют собой конструкцию, которая сочетает в себе не только несколько диодов, но и конденсаторы. Благодаря этому достигается способность выделять модуляцию с низкими частотами из соответствующих сигналов. Такие детекторы часто используются при изготовлении радиоприёмников и телевизоров.
  3. Диодная искрозащита. Для её создания применяются специальные диодные барьеры, которые ограничивают напряжение в имеющейся электрической цепи. Вместе с ними используются специальные токоограничительные резисторы, необходимые для контроля за величиной параметров проходящего электрического тока.
  4. Переключатели на основе диодов. Эти устройства дополняются конденсаторами и коммутируют высокочастотные сигналы. При этом контроль за работой осуществляется с помощью подачи управляющего сигнала, разделения высоких частот и применения постоянного тока.

Способы подключения

Существует несколько стандартных вариантов подключения диода в электрическую цепь. Все они используются в определённых схемах и позволяют достичь требуемого результата.

Прямой вариант

Этот способ включения диода в электрическую цепь называют наиболее простым и часто используемым. В его основе лежит подсоединение положительного полюса к области p-типа, а отрицательного — к n-типа.

Описание работы диода при прямом подключении:

  1. На устройство подаётся электрический ток, под воздействием которого образуется электрическое поле в области между двумя электродами. Его направление будет противоположным по отношению к внутреннему диффузионному полю.
  2. Затем происходит резкое сужение запирающего слоя, которое получается из-за значительного снижения напряжения электрического поля.
  3. Следствием этого станет способность большинства электронов свободно перемещаться из одной области (n-типа) в другую (p-типа).
  4. Во время этого процесса показатели дрейфового тока не изменятся, так как они зависят только от количества заряженных частиц, находящихся в области p-n перехода.
  5. Электроны способны перемещаться из n-области в p-область, что приводит к дисбалансу их концентрации. В одной из областей будет недостаток частиц, а в другой — избыток.
  6. Из-за этого часть электронов перемещается вглубь полупроводника, что становится причиной разрушения его электронейтральности.
  7. В этом случае полупроводник стремится к восстановлению своей нейтральности и начинает получать заряд от подключённого источника питания. Всё это приводит к образованию тока во внешней электроцепи.

Обратный метод

Этот способ подключения диода к общей схеме используется гораздо реже. В его основе лежит изменение полярности внешнего источника питания, который участвует в процессе передачи напряжения.

Особенности функционирования диода при обратном включении:

  1. После включения источника питания в области p-n перехода образуется электрическое поле. Его направление будет одинаковым с внутренним диффузионным полем.
  2. Из-за этого будет происходить расширение запирающего слоя.
  3. Находящееся в области p-n перехода поле будет ускорять движение электронов, но оставлять неизменными показатели дрейфующего тока.
  4. Из-за всех этих действий будет постепенно нарастать обратное напряжение, которое поспособствует стремлению электрического тока к максимальным значениям.

Возможные неисправности

Во время работы устройств с диодами могут возникать различные поломки. Это происходит из-за старения элементов или их амортизации.

Специалисты по ремонту различают 4 вида неисправностей.

Среди них такие:

  1. Электрический пробой. Это одна из наиболее распространённых поломок, которые встречаются у диодов. Она является обратимой, так как не приводит к разрушению диодного кристалла. Исправить её можно путём постепенного снижения подаваемого напряжения.
  2. Тепловой пробой. Такая неисправность более губительна для диода. Она возникает из-за плохого теплоотвода или перегрева в области p-n перехода. Последний образуется только в том случае, если устройство питается от тока с чрезмерно высокими показателями. Без проведения ремонтных мероприятий проблема только усугубится. При этом произойдёт рост колебания атомов диодного кристалла, что приведёт к его деформации и разрушению.
  3. Обрыв. При возникновении этой неисправности устройство прекращает пропуск электрического тока в обоих направлениях. Таким образом, он становится изолятором, блокирующим всю систему. Для устранения поломки нужно точно определить её местонахождение. Для этого следует применять специальные высокочувствительные тестеры, которые повысят шанс обнаружить обрыв.
  4. Утечка. Под этой поломкой понимают нарушение целостности корпуса, вызванного физическим или иным воздействием на прибор.

Диод — важный элемент конструкции, который обеспечивает исправную и бесперебойную работу устройства. При правильном выборе этого элемента и обеспечении оптимальных условий работы можно избежать каких-либо неисправностей.

Полупроводниковые диоды: виды и характеристики

Для контроля направления электрического тока необходимо применять разные радио и электро детали. В частности, современная электроника использует с такой целью полупроводниковый диод, его применение обеспечивает ровный ток.

Читать еще:  Вентиль устройство и принцип действия

Устройство

Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц. Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами. Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.

Фото — полупроводниковый диод

Для создания полупроводниковых диодов используются германий и селен, как и более 100 лет назад. Их структура позволяет использовать детали для улучшения электронных схем, преобразования переменного и постоянного тока в однонаправленный пульсирующий и для совершенствования разных устройств. На схеме он выглядит так:

Фото — обозначение диода

Существуют разные виды полупроводниковых диодов, их классификация зависит от материала, принципа работы и области использования: стабилитроны, импульсные, сплавные, точечные, варикапы, лазер и прочие типы. Довольно часто используются аналоги мостов – это плоскостной и поликристаллический выпрямители. Их сообщение также производится при помощи двух контактов.

Основные преимущества полупроводникового диода:

  1. Полная взаимозаменяемость;
  2. Отличные пропускные параметры;
  3. Доступность. Их можно купить в любом магазине электро-товаров или снять бесплатно со старых схем. Цена начинается от 50 рублей. В наших магазинах представлены как отечественные марки (КД102, КД103, и т. д.), так и зарубежные.

Маркировка

Маркировка полупроводникового диода представляет собой аббревиатуру от основных параметров устройства. Например, КД196В – кремниевый диод с напряжением пробоя до 0,3 В, напряжением 9,6, модель третьей разработки.

Исходя из этого:

  1. Первая буква определяет материал, из которого изготовлен прибор;
  2. Наименование устройства;
  3. Цифра, определяющая назначение;
  4. Напряжение прибора;
  5. Число, которое определяет прочие параметры (зависит от типа детали).

Видео: применение диодов

Принцип работы

Полупроводниковые или выпрямительные диоды имеют довольно простой принцип работы. Как мы уже говорили, диод изготовлен из кремния таким образом, что один его конец p-типа, а другой конец типа n. Это означает, что оба контакта имеют различные характеристики. На одном наблюдается избыток электронов, в то время как другой имеет избыток отверстий. Естественно, в устройстве есть участок, в котором все электроны заполняют определенные пробелы. Это означает, что внешние заряды отсутствуют. В связи с тем, что эта область обедняется носителями заряда и известна как объединяющий участок.

Фото — принцип работы

Несмотря на то, что объединяющий участок очень мал, (часто его размер составляет несколько тысячных долей миллиметра), ток не может протекать в нем в обычном режиме. Если напряжение подается так, что площадь типа p становится положительной, а тип n, соответственно, отрицательной, отверстия переходят к отрицательному полюсу и помогают электронам перейти через объединяющий участок. Точно так же электроны движутся к положительному контакту и как бы обходят объединительный. Несмотря на то, что все частицы движутся с разным зарядом в разном направлении, в итоге они образуют однонаправленный ток, что помогает выпрямить сигнал и предупредить скачки напряжения на контактах диода.

Если напряжение прикладывается к полупроводниковому диоду в противоположном направлении, ток не будет проходить по нему. Причина заключается в том, что отверстия привлекаются отрицательным потенциалом, который находится в области р-типа. Аналогично электроны притягиваются к положительному потенциалу, который применяется к области n-типа. Это заставляет объединяющий участок увеличиваться в размере, из-за чего поток направленных частиц становится невозможным.

Фото — характеристики полупроводников

ВАХ-характеристики

Вольт амперная характеристика полупроводникового диода зависит от материала, из которого он изготовлен и некоторых параметров. Например, идеальный полупроводниковый выпрямитель или диод имеет следующие параметры:

  1. Сопротивление при прямом подключении – 0 Ом;
  2. Тепловой потенциал – VG = +-0,1 В.;
  3. На прямом участке RD > rD, т. е. прямое сопротивление больше, чем дифференциальное.

Если все параметры соответствуют, то получается такой график:

Фото — ВАХ идеального диода

Такой диод использует цифровая электротехника, лазерная индустрия, также его применяют при разработке медицинского оборудования. Он необходим при высоких требованиях к логическим функциям. Примеры – лазерный диод, фотодиод.

На практике, эти параметры очень отличаются от реальных. Многие приборы просто не способны работать с такой высокой точностью, либо такие требования не нужны. Эквивалентная схема характеристики реального полупроводника демонстрирует, что у него есть серьезные недостатки:

Фото — ВАХ в реальном полупроводниковом диоде

Данная ВАХ полупроводникового диода говорит о том, что во время прямого включения, контакты должны достигнуть максимального напряжения. Тогда полупроводник откроется для пропуска электронных заряженных частиц. Эти свойства также демонстрируют, что ток будет протекать нормально и без перебоев. Но до момента достижения соответствия всех параметров, диод не проводит ток. При этом у кремниевого выпрямителя вольтаж варьируется в пределах 0,7, а у германиевого – 0,3 Вольт.

Работа прибора очень зависит от уровня максимального прямого тока, который может пройти через диод. На схеме он определяется ID_MAX. Прибора так устроен, что во время включения прямым путем, он может выдержать только электрический ток ограниченной силы. В противном случае, выпрямитель перегреется и перегорит, как самый обычный светодиод. Для контроля температуры используются разные виды устройств. Естественно, некоторые из них влияют на проводимость, но зато продлевают работоспособность диода.

Еще одним недостатком является то, что при пропуске переменного тока, диод не является идеальным изолирующим устройством. Он работает только в одном направлении, но всегда нужно учитывать ток утечки. Его формула зависит от остальных параметров используемого диода. Чаще всего схемы его обозначают, как IOP. Исследование независимых экспертов установило, что германиевые пропускают до 200 µА, а кремниевые до 30 µА. При этом многие импортные модели ограничиваются утечкой в 0.5 µА.

Фото — отечественные диоды

Все разновидности диодов поддаются напряжению пробой. Это свойство сети, которое характеризуется ограниченным напряжением. Любой стабилизирующий прибор должен его выдерживать (стабилитрон, транзистор, тиристор, диодный мост и конденсатор). Когда внешняя разница потенциалов контактов выпрямительного полупроводникового диода значительно выше ограниченного напряжения, то диод становится проводником, в одну секунду снижая сопротивление до минимума. Назначение устройства не позволяет ему делать такие резкие скачки, иначе это исказить ВАХ.

Что такое диод — принцип работы и устройство

Диод –это один из самых простых приборов-полупроводников. У него есть две области с разными типами проводимости: положительный и отрицательный электрод. Это есть то, из чего состоит диод: анод, катод иp-n переход. Существует несколько разновидностей приборов.

Электровакуумные диоды

Вакуумный диод – это устройство в виде стеклянной лампы или металлокерамического баллона. Из него откачивают воздух и помещают внутрь два электрода с нитью накаливания – проводником. Она соединяется с катодом и нагревается внешним током.

Принцип работы

У диода принцип работы основан на односторонней проводимости. В электровакуумных приборах это достигается следующим образом:

  1. Нить накаливания нагревается, передавая тепло катоду, который начинает испускать электроны.
  2. Анод притягивает частицы только на «плюсе».
  3. Анод, подключенный к «минусу»,начнет отталкивать электроны, и тока в цепи не будет.
Читать еще:  Редуктор червячный ручной привод

Благодаря принципу действия диода, основанному на управлении потоком электронов, такие устройства также называют ламповыми.

Конструкция прибора предполагает наличие выводов электродов, соединенных с контактными областями. У диода может быть два состояния: открытое и закрытое.

Прямое включение диода

К аноду диода подают положительное напряжение, на катод – отрицательное. Что получается:

  • электроны двигаются к месту p-n границы;
  • сопротивление в месте перехода уменьшается, проводимость увеличивается;
  • как следствие возникает прямой ток.

При соблюдении полярности диод будет считаться включенным прямо.

Обратное включение диода

Если подключить выводы наоборот, частицы станут перемещаться от p-n слоя. Сопротивление повысится, и протекающий ток будет низким, или обратным. При расчетах его не учитывают – под односторонней проводимостью подразумевают наличие именно прямого тока.

Виды напряжения

Соответственно состояниям различают два типа напряжения: прямое и обратное. Главный определяющий параметр – сопротивление границы областей электродов.

Вольт-амперная характеристика (ВАХ)

Один из ответов на вопрос о том, что такое диод, – зависимость проходящего через границу p-n тока от полярности подаваемого напряжения и его величины.

Ее показывают на графике:

  • вертикальная ось – прямой и обратный ток (верхняя и нижняя часть) в Амперах;
  • горизонтальная – обратное и прямое напряжение (левая и правая сторона).

Образуется кривая, показывающая значения пропускного и обратного тока.

Полупроводниковые диоды

Как работает диод полупроводник? Его работа основана на взаимодействии заряда с электромагнитным полем. Условная конструкция:

  • элемент из полупроводникового материала;
  • сторона, принимающая электроны, – анод, проводимость p-типа;
  • катод, отдающий частицы (проводимость n-типа).

Между двумя слоями формируется граница – p-n переход.

Вольт-амперная характеристика

На графике кривая имеет ветви в обеих его частях:

  1. Прямая – в правой части графика. Направлена вверх, показывает возрастание прямого тока при увеличении напряжения.
  2. Обратная – в левой стороне. Показывает рост обратного тока – меньше, чем прямого, поэтому ветвь расположена близко к оси напряжения.

Чем ближе ветвь к вертикальной оси справа и к горизонтальной слева, тем лучше выпрямительные свойства.

Предельные значения параметров

На графике каждого прибора есть момент, когда ток нарастает сильнее. Это зависит от устройства диода – разные материалы «открываются» при разных показателях. Ток возрастает, и происходит нагревание кристалла полупроводника.

Тепло либо рассеивается само по себе, либо отводится при помощи радиаторов. Если ток превышает допустимый параметр, проводник разрушается под воздействием высокой температуры. Поэтому по назначению диода, а также материалу определяют максимально допустимые параметры.

Виды полупроводниковых диодов

Полупроводниковый – широкое определение, оно описывает саму идею и общее устройство. На практике существует множество узкоспециализированных разновидностей.

Выпрямители и их свойства

Иногда нужно преобразовать ток в цепи, для чего нужен диод с выпрямительными свойствами либо диодный мост. Благодаря принципу работы, переменный ток на входе прибора даст лишь одну полуволну – в открытом состоянии.

Полупроводниковые стабилитроны

Задача этих устройств – стабилизация напряжения. Как это происходит:

  • в обычном состоянии у перехода высокое сопротивление, ток почти не проходит;
  • если наступает пробой, проходимость увеличивается, сопротивление падает.

Устройства работают в условиях пробоя и часто применяются для профилактики перенапряжения.

Диод Зенера

Часто можно встретить название «диод Зенера», что это такое? Это лишь еще одно название стабилитрона – в честь ученого Кларенса Зенера, открывшего туннельный пробой. Это эффект прохождения заряженных частиц через p-n барьер, когда перекрываются зоны электродов. Открытие позволило разработать первые стабилитроны, отсюда название.

Принцип работы детекторов

На основе обычного выпрямителя можно собрать простейший амплитудный детектор. Как устроена работа диода (например, с барьером Шоттки):

  • если полупериоды выше напряжения на конденсаторе, начинается зарядка;
  • как только амплитуда становится меньше его значения, диод закрывается.

Конденсатор разряжается, происходит восстановление низкочастотного сигнала.

Светодиод

В отличие от обычного прибора, СД создают оптическое излучение при прохождении тока. Это происходит при рекомбинации носителей заряда с излучением фотонов на границе электродов. Впервые эффект был открыт в 1907 году, технология продолжает совершенствоваться до сих пор.

Особенности светодиода

Спектр оптического излучения узкий – нужный цвет изначально заложен в кристалле диода. Однако диапазон может отличаться в зависимости от состава материала-полупроводника:

  • зеленый – фосфид галлия;
  • синий – карбид кремния;
  • красный – арсенид галлия.

При этом светодиоды обладают высокой световой отдачей, спектральной чистотой, прочностью и долговечностью.

Туннельный

Работает на основе одноименного эффекта. При изготовлении применяют вырожденные полупроводники. Встречается в качестве усилителя.

Обращенный диод

Обладают высокими показателями обратного тока, превосходящими прямой. Отличаются низкой чувствительностью к ионизирующему излучению.

Варикап

Проще всего объяснить на примере конденсатора с переменной толщиной диэлектрического слоя. При низком напряжении на p-n переходе толщина слоя при высокой емкости мала, при высоком – слой должен увеличиваться. Для чего нужны такие диоды? Их используют как элементы с управляемой емкостью, например, в системах автонастройки частоты в радиоприборах.

Фотодиод

Устройства, в которых обратный ток возникает при попадании фотонов. По принципу действия схожи с обычным солнечным элементом.

Маркировка

Современная маркировка диодов содержит четыре элемента:

  • материал изготовления;
  • обозначение класса диода;
  • назначение или свойства;
  • номер разработки.

Например, КД202А – кремниевый (К), выпрямительный (Д) диод.

Триоды

Раньше использовались вместо транзисторов; в современной электротехнике почти не используются. Состоят из трех электродов: катода прямого либо косвенного накала, анода и сетки. В зависимости от напряжения, регулируется поток электронов, создавая эффект усилителя.

Плюсы и минусы

Полупроводниковые диоды имеют как преимущества, так и недостатки. К первым можно отнести:

  • доступность – элементы стоят недорого;
  • взаимозаменяемость – при выходе из строя легко подобрать и установить аналогичный;
  • высокая пропускная способность;
  • простой принцип работы.

Из недостатков – уязвимость к внешним воздействиям и возможные неисправности. Это могут быть:

  • обрыв перехода;
  • нарушение герметичности;
  • пробой перехода.

Однако устранить повреждения и заменить устройство несложно, поэтому минусы можно считать несущественными.

Использование в быту

Благодаря тому, как просто устроены диоды, они распространены повсеместно. Их используют почти в каждом приборе, который можно увидеть дома. Например, LED телевизоры, сам принцип их работы основан на использования светодиодов. Другие примеры – блоки питания, реле, любительские электрические схемы.

Основные неисправности диодов

Главная проблема, с которой сталкиваются при использовании диодов, – эффект пробоя. Есть несколько видов неисправности.

Пробой p-n-перехода

При пробое происходит уменьшение сопротивления, образуется обратный ток. Различают лавинный пробой, которой сопровождается цепочкой прорывов, и полевой.

Электрический пробой

Главное в электрических пробоях – они обладают обратимой природой (состояние возвращается к нормальному). Это значит, что переход не повреждается. Это позволяет использовать пробой как основополагающий принцип работы – как в стабилитронах.

Тепловой пробой

Возникает при повышении температуры. Отличается возникновением необратимых повреждений: разрушается кристаллическая решетка полупроводника.

Несмотря на простоту конструкции, диод по-прежнему используется в современных устройствах. Найти ему альтернативу удается не всегда. Тем более продолжаются работы по технологическому совершенствованию диодов для различных задач.

Видео

Ссылка на основную публикацию
Adblock
detector
×
×