C-triada.ru

Строительный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Для чего нужны сплавы

Сплавы металлов. Основные сплавы металлов. Свойства металлов и сплавов

Металлургия в нашей жизни занимает исключительно важную роль. Нет, далеко не каждый из нас принадлежит к славному сословию сталеваров, но мы ежедневно сталкиваемся с изделиями из металлов. Как правило, сделаны они из самых разнообразных сплавов. Кстати, а что это такое?

Основные определения

Нужно четко понимать, что сплавы металлов в большинстве случаев образуются вообще без участи человека. Дело в том, что получить абсолютно чистый с химической точки зрения материал можно только в лаборатории. В любом металле, который используется в бытовых условиях, наверняка есть следы другого элемента. Классический пример – золотые украшения. В каждом из них есть определенная доля меди. Впрочем, в классическом смысле под этим определением все равно понимают соединение двух и более металлов, которое было целенаправленно получено человеком.

Вся история человека является отличным примером того, как сплавы металлов оказались способны оказать огромное влияние на развитие всей нашей цивилизации. Не случайно есть даже длительный исторический период, который называется «Бронзовый век».

Общие характеристики сплавов металлов

А сейчас мы рассмотрим общие свойства металлов и сплавов, которыми те характеризуются. Их же очень часто можно встретить в специализированной литературе.

Способность сплава противостоять механическим нагрузкам и противиться разрушению.

Свойство, которое определяет сопротивляемость материала попыткам внедрить в его толщу деталь из другого сплава или металла.

Способность к восстановлению начальной формы после приложения значительного механического усилия, нагрузки.

Напротив, это свойство, характеризующее возможность изменения формы и размером под действием приложенного усилия, механической нагрузки. Кроме того, это оно же характеризует способность детали сохранять вновь приобретенную форму на протяжении длительного времени.

— способность металла оказывать сопротивление быстро возрастающим (ударным) нагрузкам

Вот какими качествами характеризуются сплавы металлов. Таблица поможет вам в них разобраться.

Сведения о производстве

К примеру, анализ металлов и сплавов показывает, что древние индийцы овладели удивительным для своего времени уровнем обработки металла. Они даже начали создавать сплавы с использованием тугоплавкого цинка, что и в наше время является довольно-таки трудоемкой и сложной процедурой.

На сегодняшний день для этих целей довольно широко используется также порошковая металлургия. Особенно часто этим методом обрабатывают черные металлы и сплавы на их основе, так как в этом случае зачастую требуется максимальная дешевизна как самого процесса, так и выпускаемой продукции.

Распространение сплавов в современной промышленности

Следует заметить, что все металлы, которые интенсивно используются современной промышленностью, являются именно сплавами. Так, более 90% всего получаемого в мире железа идет на изготовление чугунов и различных сталей. Объясняется такой подход к делу тем, что сплавы металлов в большинстве случаев демонстрируют лучшие свойства, нежели чем их «прародители».

Так, предел текучести чистого алюминия составляет всего лишь 35 Мпа. А вот если в него добавить 1,6% меди, магния и цинка в соотношении 2,5% и 5,6% соответственно, то этот показатель может легко превысить даже 500 МПа. Кроме прочего, можно значительно улучшить свойства электропроводности, теплопроводности или другие. Никакой мистики в этом нет: в сплавах строение кристаллической решетки изменяется, что и позволяет приобретать им прочие свойства.

Проще говоря, количество такого рода материалов в наши дни велико, но оно постоянно продолжает расти.

Основные классификационные сведения

В общем-то, никаких особенных сложностей здесь нет: соединения, в которых использованы цветные металлы и сплавы на основе железа. Ниже мы разберем обе этих категории на примере основных видов, а также обсудим сферы их применения в современной промышленности и на производстве.

Стали

Мы уже говорили, что механические свойства металлов и сплавов сильно отличаются, но в случае этих материалов нередко противоположными качествами обладают даже различные виды сталей, отчего сферы их применения сильно расходятся.

Если в материале менее 0,25% углерода, то он используется в каких-то технических конструкциях. Если же в стали более 0,55% углерода, то она идеально подходит для производства различных высококачественных режущих инструментов, в том числе резцов для токарных станков, сверл и хирургических принадлежностей. Но если речь идет о приспособлениях, которые применяются для быстрой резки, то на их производство идет исключительно легированная сталь.

Чугун

Если в сплаве железа содержится более 3-4% углерода, то он называется чугуном. Кроме того, его важным элементом является кремний. Из чугуна изготавливается масса деталей и готовых изделий. К примеру, блоки двигателей для автомобилей. В случае качественно сделанной отливки без полостей и каверн, изделие обладает впечатляющей механической прочностью. В этой связи стоит вспомнить хотя бы пушки 14-15 века, которые нередко выдерживали трех-четырехкратное увеличение порохового заряда.

Конечно же, применение металлов и сплавов никогда не ограничивалось исключительно военной отраслью, но зачастую получалось так, что именно эта отрасль промышленности постоянно находила новые методы обработки металла, двигая вперед всю цивилизацию.

Медные сплавы

Чаще всего под этим термином понимаются разные сорта латуни. Это такие сплавы меди, в которых содержится от 5 до 45% цинка. Если его содержание колеблется в пределах 5-20%, то это красная латунь (томпак). Если же в материале содержится уже 20–36% Zn, то это – желтая латунь.

Эти материалы идеальны в случае необходимости производства и формовки мелких деталей. Малоизвестно, но сплав меди с кремнием носит название кремнистой бронзы и обладает большой механической прочностью. Практически тем же характеризуется фосфористая разновидность (к меди прибавляется 5% олова и некоторое количество фосфора). Как и в прошлом случае, отличается высокой прочностью и пружинистыми качествами, а потому идеальна для изготовления мембран и разного рода пружин.

Сплавы свинца

Наиболее известен в настоящее время обычный припой, который изготавливается из одной части свинца и двух частей олова. Как видно из названия, он используется для пайки деталей. Применяется в радиотехнике и прочих технических отраслях. Из сурьмы и свинца делают сплавы, которые используются для изготовления оболочек разного рода кабелей.

Давно известно, что соединения этого металла с кадмием, висмутом или оловом могут плавиться приблизительно при температуре 70 градусов по шкале Цельсия. Именно поэтому сегодня из них делают различные предохранители в системах автоматического пожаротушения.

Как ни странно, но свинец издавна был известен поварам и рестораторам, так как из него нередко делали столовую посуду и приборы. Сплав, который использовался для этого, называется пьютер. В его состав входит приблизительно 85–90% олова. Оставшиеся 10-15% как раз-таки занимает свинец (стандартный сплав двух металлов).

Техники также наверняка знакомы с баббитами. Это также соединения на основе свинца, в состав которых также входит олово, а также мышьяк и сурьму. Эти сплавы весьма ядовиты, но из-за некоторых особых качеств их активно используют в подшипниковой отрасли промышленности.

О легких сплавах

Как мы уже говорили, свойства металлов и сплавов отличаются тем, что у вторых во многих случаях характеристики выше. Особенно это заметно в отношении современной промышленности. В последние годы ей требуется огромное количество легких сплавов, которые обладают повышенной механической прочностью, а также устойчивостью к воздействиям неблагоприятных факторов внешней среды и высокой температуре.

Чаще всего для их производства используется алюминий, бериллий, а также магний. Особенно востребованы соединения на основе алюминия и магния, так как сфера их возможного применения чрезвычайно широка.

Сплавы на основе алюминия

Какими они бывают?

Делятся сплавы алюминия сразу на три большие группы:

  • Литейные (Al – Si). Особенно широко они распространены в автомобилестроении и военной промышленности.
  • Сплавы, предназначенные для литья под давлением (Al – Mg).
  • Соединения повышенной прочности, самозакаливающиеся (Al – Cu).
Читать еще:  Что такое co2 в химии

Достоинства и недостатки этого материала

Многие сплавы из этого материала экономичны, сравнительно недороги и весьма долговечны, так как не поддаются коррозии. Отличаются высокой прочностью в условиях экстремально низких температур (аэрокосмические отрасли) и весьма простым процессом обработки. Для их формовки не требуется особенно сложного и дорогостоящего оборудования, так как они сравнительно пластичные и вязкие (смотрите таблицу с характеристиками).

Увы, но есть у них и свои недостатки. Так, при температурах выше 175 °С механические свойства алюминия и сплавов на его основе начинают стремительно ухудшаться. Зато благодаря наличию амальгамы на их поверхности (защитной пленки из гидроксида алюминия) они обладают выдающейся устойчивостью к действию агрессивных химических сред, в том числе кислот и щелочей.

Они имеют отличную электропроводность и теплопроводность, немагнитны. Считается, что они абсолютно безвредны для здоровья человека, а потому их можно использовать для производства пищевой посуды и столовых принадлежностей. Впрочем, последние исследователи медиков все же говорят о том, что соединения алюминия в некоторых случаях могут провоцировать развитие болезни Альцгеймера.

Военные полюбили эти материалы за то, что они не дают искр даже при резких механических воздействиях и ударах. Кроме того, они отлично поглощают ударные нагрузки. Проще говоря, некоторые эти сплавы металлов (состав которых чаще всего засекречен) активно используются для производства легкой брони для оснащения ей разнообразных БТР, БМП, БРДМ и прочей техники.

Благодаря всем этим свойствам сплавы на основе повсеместно используют для производства поршней для двигателей внутреннего сгорания, а также в производстве строительных конструкций (устойчивость к коррозии). Широко используется алюминий и материалы на его основе в производстве отражателей для светотехнических представлений, электропроводки, а также для изготовления корпусов разнообразной техники (не намагничивается).

Ослабить негативное действие примесей железа помогает кобальт, хром или марганец. Если же в состав сплава входит литий, то получается весьма прочный и упругий материал. Неудивительно, что такое соединение пользуется большой популярностью в авиакосмической промышленности. Увы, но сплавы лития с алюминием имеют неприятное свойство, которое опять-таки выражается в плохой пластичности.

Подведем некоторые итоги. Получается, что основные сплавы металлов в космонавтике, авиации и прочих высокотехнологичных отраслях, имеют в своем составе алюминий. В общем-то, именно так и обстоят дела на сегодняшний день, но нередко в современной промышленности используется магний и его сплавы.

Сплавы магния

Они имеют крайне невысокую массу, а также характеризуются весьма впечатляющей прочностью. Кроме того, именно эти материалы великолепно подходят для литейной промышленности, а заготовки прекрасно поддаются токарной и фрезеровочной обработке. А потому их активно используют в производстве ракет и авиационных турбин, корпусов приборов, дисков автомобильных колес, а также некоторых сортов броневой стали.

Некоторые разновидности этих сплавов отличаются великолепными показателями вязкостного демпфирования, а потому они идут на производство деталей и конструкций, которым приходится работать в условиях экстремально высокого уровня вибраций.

Достоинства и недостатки магниевых сплавов

Они довольно мягкие, сравнительно неплохо сопротивляются износу, но отличаются не слишком впечатляющей пластичностью. Зато они отличаются прекрасной приспособленностью к формовке в условиях высоких температур, отлично приспособлены для соединения с использованием всех существующих разновидностей сварок, а также могут быть соединены посредством болтовых соединений, клепки и даже склеивания.

Увы, но все эти сплавы не отличаются особенной стойкостью к воздействию кислот и щелочей. Крайне негативно на них воздействует долгое пребывание в морской воде. Впрочем, магниевые сплавы на удивление стабильны в условиях воздушной среды, так что многими их недостатками можно пренебречь. Если же требуется надежно защитить такие детали от действия коррозии, то применяют нанесение хромового покрытия, анодирование или подобные же методы.

Их можно плакировать при помощи никеля, меди или хрома, предварительно погружая в расплав химически чистого цинка. При такой обработке резко возрастают показатели их прочности и устойчивости к истиранию. Нужно напомнить, что магний является довольно-таки активным с химической точки зрения металлом, а потому при работе с ним необходимо соблюдать хотя бы базовые меры безопасности.

Применение металлов и их сплавов

О том, что свойства металлов меняются при их сплавлении, стало известно ещё в древности. 5 тысяч лет тому назад наши предки научились делать бронзу — смесь олова с медью. Бронза по твёрдости превосходит оба металла, входящие в её состав.

Свойства чистых металлов, как правило, не соответствуют необходимым требованиям, поэтому практически во всех сферах человеческой деятельности используют не чистые металлы, а их сплавы. Это материал, который образуется в результате затвердения расплава двух или нескольких отдельных веществ. В их состав, кроме металлов могут входить также неметаллы, например, такие как углерод или кремний.

Добавляя в определённом количестве примеси других металлов и неметаллов, можно получить многие тысячи материалов с самыми разнообразными свойствами, в том числе и такими, каких нет ни у одного из составляющих смесь элементов. Сплав по сравнению с исходным металлом может быть механически прочнее и твёрже, со значительно более высокой или низкой температурой плавления, устойчивее к коррозии, устойчивее к высоким температурам,практически не менять своих размеров при нагревании или охлаждении и т. д.

Применение в качестве конструкционных материалов

Сплавы, используемые для изготовления различных конструкций, должны быть прочными и легко обрабатываемыми. В строительстве и в машиностроении наиболее широко используются смеси железа и алюминия. Такие сплавы железа, как стали, отличаются высокой прочностью и твёрдостью. Их можно ковать, прессовать, сваривать.

Чугуны используют для изготовления массивных и очень прочных деталей. Например, раньше из чугуна отливали радиаторы центрального отопления, канализационные трубы, до сих пор изготавливают котлы, перила и опоры мостов. Изделия из чугуна изготавливаются с применением литья.

Сплавы алюминия, используемые в конструкциях, наряду с прочностью должны отличаться лёгкостью. Дюралюминий, силумин — соединения алюминия, они незаменимы в самолёто-, вагоно- и кораблестроении. В некоторых узлах самолётов используются смеси магния, очень лёгкие и жароустойчивые.

В ракетостроении применяют лёгкие и термостойкие соединения на основе титана. Для улучшения ударопрочности, коррозионной стойкости, износоустойчивости сплавы легируют — вводят специальные добавки. Добавка марганца делает сталь ударопрочной. Чтобы получить нержавеющую сталь, в состав смеси вводят хром.

Инструментальные сплавы

Предназначены для изготовления режущих инструментов, штампов и деталей точных механизмов. Такие соединения должны быть износостойкими и прочными, причём при разогревании их прочность не должна существенно уменьшаться. Таким требованиям отвечают, например, нержавеющие стали, которые прошли специальную обработку (закалку).

Добавление к сплавам веществ, улучшающих их свойства, называют легированием. Для придания необходимых свойств инструментальные стали, как правило, легируют вольфрамом, ванадием или хромом.

Применение в электротехнической промышленности, электронике и приборостроении

Сплавы служат незаменимым материалом при изготовлении особо чувствительных и высокоточных приборов, различного рода датчиков и преобразователей энергии. Например, на изготовление сердечников трансформаторов и деталей реле идёт смесь никеля. Отдельные детали электромоторов изготавливаются из соединений кобальта. Сплав никеля с хромом — нихром, отличающийся высоким сопротивлением — используется для изготовления нагревательных элементов печей и бытовых электроприборов.

Из сеодинений меди в электротехнической промышленности и в приборостроении наиболее широкое применение находят латуни и бронзы. Латуни незаменимы при изготовлении приборов, деталью которых являются запорные краны. Такие приборы используются в сетях подачи газа и воды. Бронзы идут на изготовление пружин и пружинящих контактов.

Применение легкоплавких сплавов

Главным востребованным свойством является заданная низкая температура плавления. Это свойство, в частности, используется для пайки микросхем. Кроме того, эти соединения должны иметь определённую плотность, прочность на разрыв, химическую инертность, теплопроводность.

Легкоплавкие смеси производят из висмута, свинца, кадмия, олова и других металлов. Такие сплавы используют в термодатчиках, термометрах, пожарной сигнализации, например, сплав Вуда. А также в литейном деле для производства выплавляемых моделей, для фиксации костей и протезирования в медицине. Соединение натрия с калием (температура плавления –12,5 °С) используется как теплоноситель для охлаждения ядерных реакторов. Легкоплавкие смеси используются в литейном деле, незаменимы в датчиках пожарной сигнализации

Читать еще:  Какой угол обзора должен быть у телевизора

Применение в ювелирном деле

Применение в чистом виде драгоценных металлов в ювелирном деле не всегда оправдано и целесообразно из-за их дороговизны, физических и химических особенностей. Для придания ювелирным изделиям из золота большей твёрдости и износостойкости используются сплавы с другими металлами. Самая лучшая добавка — это серебро (понижает температуру плавления) и медь (повышает твёрдость). Чистое золото используют очень редко, так как оно слишком мягкое, легко деформируется и царапается.

Из смеси золота с 10–30 % других благородных металлов (платины или палладия) изготавливают форсунки лабораторных приборов, а из соединений с 25–30 % серебра — ювелирные изделия и электрические контакты.

Сплавы в искусстве

Оловянная бронза (смесь меди с оловом) — один из первых освоенных человеком соединений металлов. Она обладает большей, по сравнению с чистой медью, твёрдостью, прочностью и более легкоплавка. Бронзы успешно применяют для получения сложных по конфигурации отливок, включая художественное литьё. Классической маркой бронзы является колокольная бронза.

Одно из новых направлений в искусстве — производство художественных литых изделий из чугуна. Литые изделия из чугуна существенно превосходят по качеству кованые изделия. Чугун — металл гораздо более хрупкий и не такой ковкий, как сталь. Но даже из такого, казалось бы, грубого материала можно получать настоящие произведения литейного искусства способом литья, например, такие как литые лестницы или решётки на окна. Такие изделия подвержены лишь поверхностной коррозии и не требуют тщательного ухода.

Сплавы, их классификация и применение.

Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс. сплавов. Читайте подробнее о их классификации и применении.

Сплавы ― это макроскопически однородные материалы, имеющие металлические свойства и состоящие из смеси двух или большего числа химических элементов, из которых хотя бы один является металлом. Многие металлические сплавы имеют один или несколько металлов в качестве основы с малыми добавками других специально вводимых в сплав легирующих и модифицирующих элементов. Также в составе сплава могут содержаться неудалённые примеси (природные, технологические и случайные).

По способу изготовления различают два типа сплавов:

  • Литые сплавы изготавливаются самым распространенным способом – кристаллизацией однородной смеси их расплавленных компонентов.
  • Порошковые сплавы образуются путем прессования смеси порошков компонентов с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана.

По способу получения заготовки (изделия) различают два типа сплавов:

  • литейные (например, чугуны, силумины);
  • деформируемые (например, стали) и порошковые сплавы.

В промышленности используют большое количество сплавов – конструкционных, инструментальных, специальных (см. Табл. 1, 2). Их различают по назначению:

Конструкционные сплавы со специальными свойствами (например, искробезопасность, антифрикционные свойства):

Сплавы для заливки подшипников:

Сплавы для измерительной и электронагревательной аппаратуры:

Для изготовления режущих инструментов:

В промышленности также используются жаропрочные, легкоплавкие и коррозионностойкие сплавы, термоэлектрические и магнитные материалы, а также аморфные сплавы.

Число металлических сплавов, применяемых в наши дни, очень велико и непрерывно растет. Их принято разделять на две большие категории: сплавы на основе железа и сплавы цветных металлов. Ниже перечислим наиболее важные сплавы промышленного значения и укажем основные области их применения.

Сплавы железа с углеродом, содержащие его до 2%, называются сталями. При введении легирующих элементов, таких, как хром, ванадий, никель, сталь становится легированной. Из всех видов металлов и сплавов, стали занимают первое место по объему их производства. Сфера их применения чрезвычайно широка, сложно было бы перечислить все возможные варианты. В общем можно сказать, что малоуглеродистые стали (менее 0,25% углерода) используется в качестве конструкционного материала, а стали с более высоким содержанием углерода (более 0,55%) идут на изготовление таких низкоскоростных режущих инструментов, как бритвенные лезвия и сверла. Легированные стали применяются в машиностроении всех видов и в производстве быстрорежущих инструментов.

Чугуном называют сплав железа с 2–4% углерода. Кроме того, важным компонентом чугуна является кремний. Из чугуна отливают самые разнообразные изделия, имеющие утилитарные функции, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей. В правильно выполненных отливках достигаются хорошие механические свойства материала.

Такие сплавы в основном представлены различными видами латуни, т.е. медными сплавами, содержащими от 5 до 45% цинка. Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), а с содержанием 20–36% Zn – желтой (альфа-латунью). Латуни применяются в производстве различных мелких деталей, где требуются хорошая обрабатываемость и формуемость. Популярны также сплавы меди с оловом, кремнием, алюминием или бериллием – это бронзы. Например, сплав меди с кремнием ― кремнистая бронза. Фосфористая бронза (медь с 5% олова и следовыми количествами фосфора) обладает высокой прочностью и применяется для изготовления пружин и мембран.

Такие сплавы широко применяются для пайки. Обычный припой (третник) состоит из одной части свинца и двух частей олова. Он широко применяется для соединения (пайки) трубопроводов и электропроводов. Кроме того, из сурьмяно-свинцовых сплавов делают оболочки телефонных кабелей и пластины аккумуляторов. Сплавы свинца с определенным количеством кадмия, олова и висмута могут иметь точку плавления, лежащую значительно ниже точки кипения воды (

70° C); по этой причине из них делают плавкие пробки клапанов спринклерных систем противопожарного водоснабжения. Сплав пьютер, из которого до сих пор производят декоративную посуду и украшения, содержит 85–90% олова (остальное – свинец). Свинец содержится в подшипниковых сплавах, называемых баббитами, в них также присутствуют такие химические элементы, как олово, сурьма и мышьяк.

В современной промышленности необходимы легкие сплавы с высокой прочностью, обладающие хорошими высокотемпературными механическими свойствами. Основными металлами легких сплавов служат алюминий, магний, титан и бериллий. Однако сплавы на основе алюминия и магния не могут применяться в условиях высокой температуры и в агрессивных средах.

К этим сплавам относятся литейные сплавы (алюминий Al – кремний Si), сплавы для литья под давлением (алюминий Al – магний Mg) и самозакаливающиеся сплавы повышенной прочности (алюминий Al – медь Cu). Алюминиевые сплавы экономичны, легкодоступны, они достаточно прочны при низких температурах и легко обрабатываются (легко куются, штампуются, пригодны для глубокой вытяжки, волочения, экструдирования, литья, хорошо свариваются и обрабатываются на металлорежущих станках). Необходимо заметить, что механические свойства всех алюминиевых сплавов заметно ухудшаются при температурах выше приблизительно 175° С. Но благодаря образованию защитной оксидной пленки на поверхности алюминиевые сплавы проявляют хорошую коррозионную стойкость в большинстве обычных агрессивных сред. Эти сплавы хорошо проводят электричество и тепло, обладают высокой отражательной способностью, немагнитны, безвредны в контакте с пищевыми продуктами (поскольку продукты коррозии бесцветны, не имеют вкуса и нетоксичны), взрывобезопасны (поскольку не дают искр) и хорошо поглощают ударные нагрузки. Благодаря такому сочетанию свойств алюминиевые сплавы служат хорошими материалами для легких поршней, применяются в вагоно-, автомобиле- и самолетостроении, в пищевой промышленности, в качестве архитектурно-отделочных материалов, в производстве осветительных отражателей, технологических и бытовых кабелепроводов, при прокладке высоковольтных линий электропередачи.

Примесь железа, от которой трудно избавиться, повышает прочность алюминия при высоких температурах, но снижает коррозионную стойкость и пластичность при комнатной температуре. Кобальт, хром и марганец ослабляют охрупчивающее действие железа и повышают коррозионную стойкость. При добавлении лития к алюминию повышаются модуль упругости и прочность, что делает такой сплав весьма привлекательным для авиакосмической промышленности. К сожалению, при своем превосходном отношении предела прочности к массе (удельной прочности) сплавы алюминия с литием обладают низкой пластичностью.

Читать еще:  Как подключить дхо без реле через габарит

Магниевые сплавы легки, характеризуются высокой удельной прочностью, а также хорошими литейными свойствами и превосходно обрабатываются резанием. Поэтому они применяются для изготовления деталей ракет и авиационных двигателей, корпусов для автомобильной оснастки, колес, бензобаков, портативных столов и т.п. Некоторые магниевые сплавы, обладающие высоким коэффициентом вязкостного демпфирования, идут на изготовление движущихся частей машин и элементов конструкции, работающих в условиях нежелательных вибраций.

Магниевые сплавы имеют свои недостатки, они довольно мягки, плохо сопротивляются износу и не очень пластичны. Зато они легко формуются при повышенных температурах, пригодны для электродуговой, газовой и контактной сварки, а также могут соединяться пайкой (твердым), болтами, заклепками и клеями. Такие сплавы не отличаются особой коррозионной стойкостью по отношению к большинству кислот, пресной и соленой воде, но стабильны на воздухе. От коррозии их обычно защищают поверхностным покрытием – хромовым травлением, дихроматной обработкой, анодированием. Магниевым сплавам можно также придать блестящую поверхность либо плакировать медью, никелем и хромом, нанеся предварительно покрытие погружением в расплавленный цинк. Анодирование магниевых сплавов повышает их поверхностную твердость и стойкость к истиранию. Магний – металл химически активный, а потому необходимо принимать меры, предотвращающие возгорание стружки и свариваемых деталей из магниевых сплавов.

Титановые сплавы превосходят как алюминиевые, так и магниевые в отношении предела прочности и модуля упругости. Их плотность больше, чем всех других легких сплавов, но по удельной прочности они уступают только бериллиевым. При достаточно низком содержании углерода, кислорода и азота они довольно пластичны. Электрическая проводимость и коэффициент теплопроводности титановых сплавов малы, они стойки к износу и истиранию, а их усталостная прочность гораздо выше, чем у магниевых сплавов. Предел ползучести некоторых титановых сплавов при умеренных напряжениях (порядка 90 МПа) остается удовлетворительным примерно до 600° C, что значительно выше температуры, допустимой как для алюминиевых, так и для магниевых сплавов. Титановые сплавы достаточно стойки к действию гидроксидов, растворов солей, азотной и некоторых других активных кислот, но не очень стойки к действию галогеноводородных, серной и ортофосфорной кислот.

Титановые сплавы ковки до температур около 1150° C. Они допускают электродуговую сварку в атмосфере инертного газа (аргона или гелия), точечную и роликовую (шовную) сварку. Обработке резанием они не очень поддаются (схватывание режущего инструмента). Плавка титановых сплавов должна производиться в вакууме или контролируемой атмосфере во избежание загрязнения примесями кислорода или азота, вызывающими их охрупчивание. Титановые сплавы применяются в авиационной и космической промышленности для изготовления деталей, работающих при повышенных температурах (150–430° C), а также в некоторых химических аппаратах специального назначения. Из титано-ванадиевых сплавов изготавливается легкая броня для кабин боевых самолетов. Титан-алюминиево-ванадиевый сплав – основной титановый сплав для реактивных двигателей и корпусов летательных аппаратов.

Пластичный бериллиевый сплав можно получить, например, вкрапляя хрупкие зерна бериллия в мягкую пластичную матрицу, такую, как серебро. Сплав этого состава удалось холодной прокаткой довести до толщины, составляющей 17% первоначальной. Бериллий превосходит все известные металлы по удельной прочности. В сочетании с низкой плотностью это делает бериллий пригодным для устройств систем наведения ракет. Модуль упругости бериллия больше, чем у стали, и бериллиевые бронзы применяются для изготовления пружин и электрических контактов. Чистый бериллий используется как замедлитель и отражатель нейтронов в ядерных реакторах. Благодаря образованию защитных оксидных слоев он устойчив на воздухе при высоких температурах. Главная трудность, связанная с бериллием, – его токсичность. Он может вызывать серьезные заболевания органов дыхания и дерматит.

Для чего нужны сплавы

Al, Mg, Si, Cu, Zn, Mn, Li, Be

Легкость, высокая электро- и теплопроводность, коррозионная стойкость, высокая удельная прочность

Конструкционные материалы в авиации, строительстве, машиностроении и др.; электротехнические устройства и материалы

Hg и другие металлы

В зависимости от соотношения ртути и др. металла может быть (при комнатной температуре) жидкой, полужидкой или твёрдой

Золочение металлических изделий, производство зеркал, стоматология, реактив-восстановитель в химии и металлургии

Mo, Re, Cu, Ni, Ag, оксиды (ThO2), карбиды (TaC) и др.

Пластичность, жаропрочность и высокая термо-эдс

Детали электровакуумных приборов, высокотемпературных термопар, детали двигателей ракет и самолётов

Железоуглеродистые сплавы (чугун, сталь, ферросплавы)

Fe, C, Р , S, Mn, Si, N, Cr, Ni, Mo, W, V, Ti, Со , Cu и др .

Механическая прочность, твердость, упругость, коррозионная устойчивость, вязкость и др.

Конструкционные материалы для всех областей техники, технологии, хозяйства, машины, инструмент

Au, Ag, Cu, Pt, Pd, Sb, Bi, Pb, Hg

Сплав с Ag при 20—40% Ag зеленовато-жёлтый, при 50% Ag — бледно-жёлтый; мягкий и ковкий; сплавы Au с Cu красновато-жёлтые; более твердые и упругие, чем чистое золото

Золочение металлических изделий, изготовление монет, ювелирных изделий, зубных протезов, электрических контактов

Sn, Bi, In, Pb, Cd, Zn, Sb, Ga, Hg и др .

Низкие температуры плавления (не выше 232 °С); при содержании Bi более 55% расширяются при затвердевании

Изготовление припоев, плавких предохранителей в электроаппаратуре, прессформ и моделей для изготовления отливок сложной формы из металлов и пластмасс, металлические замазки

Mg, Al, Zn, Mn, Zr, Th, Li, La, Nd, Y, Ag, Cd, Be

Лёгкость, прочность, коррозионная стойкость

Высоконагруженные детали из прессованных полуфабрикатов, штамповок и поковок в автомобилестроении, панели, штамповки сложной формы, сварные конструкции

Cu, Zn, Sn, Al, Ni, Be, P

Прочность, высокая электропроводность, коррозионная стойкость, пластичность

Трубы, теплотехническая аппаратура, подшипники, шестерни, втулки, пружины, детали приборов точной механики, термопары, фасонные детали, декоративно-прикладные изделия и скульптура

Ферромагнетизм, высокая пластичность и коррозионная стойкость, отсутствие аллотропических превращений, химическая стойкость

Конструкционные материалы с высокой стойкостью к агрессивным средам, ферромагнитные изделия, магнитострикционные материалы

Sn, Pb, Sb, Cu, Zn, Cd и др.

низкая температура плавления, мягкость, коррозионная стойкость; антифрикционные свойства

Легкоплавкие сплавы (припой, полуда) и подшипниковые материалы (баббит)

Pt, Rh, Ir, Pd, Ru, Ni, Co, Cu, W, Мо

Высокая температура плавления, коррозионная стойкость, механическая прочность, каталитические свойства

изготовление термопар электрических контактов, потенциометров, постоянных магнитов, высокотемпературных припоев, катализаторы, лабораторная посуда

Pb, Fe, Cu, Sb, Sn, Cd, Са, Ca, Mg, Li, К, Na

Прочность, твёрдость, антифрикционные, свойства, низкая температура плавления свинца, коррозионная стойкость, хорошая адгезия со многими металлами и сплавами

Изготовление или облицовка кислотоупорной аппаратуры и трубопроводов, изготовление оболочек низковольтных и силовых кабелей, припои и полуды, подшипники, типографские сплавы, грузы, балласты, отливка дроби, сердечников пуль, изготовление решёток для свинцовых аккумуляторов

WC, TiC, TaC; связующие металлы: Co, Ni, Mo, сталь

Высокая твердость, тугоплавкость, износоустойчивость, коррозионная стойкость

Цельнотвердосплавные изделия (инструмент) для обработки металлов, сплавов и неметаллических материалов, для оснащения рабочих частей буровых инструментов и как конструкционные материалы

Типографские сплавы (гарт)

низкая температура плавления (240—350 °С), хорошие литейные свойства

изготовления литых стереотипов (полиграфическая промышленность) и элементов набора (шрифты др.).

Al, V, Mo, Mn, Sn, Zr, Cr, Cu, Fe, W, Ni, Si; Nb и Та

Лёгкость, высокая прочность в широком интервале температур от -250 °С до 300-600 °С, коррозионная стойкость

Конструкционные материалы в авиации, ракетостроении, химическая аппаратура

Невысокая температура плавления, легкость обработки давлением и резанием, сварки и пайки, возможность нанесения покрытий электрохимическим и химическим способами, удовлетворительная коррозионная стойкость

Конструкционные и конструкционно-декоративные детали в автомобильной промышленности, электромашиностроении, оргтехнике, вкладыши подшипников, бытовые изделия, сувениры

Ссылка на основную публикацию
Adblock
detector