C-triada.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Для чего нужен трансформатор напряжения

Трансформаторы напряжения. Всё, что о них нужно знать

Что необходимо о них знать? Расскажем об этом в предлагаемой статье.

Трансформаторы незаменимы в электроэнергетике, электронике и радиотехнике. Их востребованность объясняется многофункциональностью, простотой устройства, высоким качеством работы (КПД – 99%), долговечной эксплуатацией.

Трансформаторы напряжения – это разновидность трансформаторов, задача которых не преобразовывать, а гальваническая развязка.

От источника электроэнергии или станции ток с высоким напряжением не может использоваться потребителями. Чтобы понизить его на входе устанавливаются понижающие трансформаторы. Они дают возможность работать на расчетном напряжении для бытовой техники, электроприборов и электроники. Их использование позволяет осуществлять работу типовых измерительных приборов. Трансформатор изолирует их от высокого сетевого напряжения, что крайне необходимо для их безопасного обслуживания и эксплуатации.

По назначению они разделяются на два основных вида – повышающие и понижающие. Преобразование напряжения в домашних условиях крайне необходимо. Бытовые приборы, питающиеся от сети 380 или 220 вольт, нуждаются в напряжении в несколько раз меньше. Во избежание выхода из строя бытового оборудования нужны понижающие. При необходимости используют повышающие аналоги.

Кроме главной функции – преобразования напряжения и тока, ТН могут быть источниками питания для автоматики, релейной защиты электролиний от замыкания, сигнализаций и т.п. Также они используются в качестве измерителей напряжения и мощности.

По сути – трансформатор напряжения – это статический электромагнитный прибор, который преобразует переменный ток одного напряжения в переменный ток другого напряжения. По конструктивным решениям и по принципу действия он сходен с силовым аналогом.

Устройство трансформатора напряжения

ТН состоят из двух главных элементов:

Обособленных друг от друга, изолированных обмоток (первичной и вторичной).

На первичную обмотку ТН подается ток, а со вторичной он идет к объекту потребления.

Принцип работы

В основе работы ТН лежит его конструкция и явление электромагнитной индукции, возникающей между элементами:

Трансформатор подсоединяется к сети. На его первичную обмотку поступает ток.

Ток переменного характера проходит по магнитопроводу, вызывает магнитный поток, который в свою очередь проходит через обе обмотки и индуцирует в них ЭДС.

К вторичной обмотке поступает ток, возникший под действием ЭДС.

Величина ЭДС тесно связана с числом витков в каждой обмотке. Меняя число витков можно увеличить или уменьшить напряжение, идущее на потребителя с вторичной обмотки.

Виды трансформаторов напряжения

Существует довольно много трансформаторов напряжения. Их функции соответствуют определенному назначению. Поэтому, прежде чем выбирать тот или иной вариант трансформатора, необходимо определиться, для чего он нужен. Все разнообразие этих приборов отличается друг от друга конструкцией, которая и определяет особенности их эксплуатации.

Все ТН условно делятся на виды по определенным критериям:

Число фаз: одно- и трехфазные.

Количество обмоток – две или три.

Класс точности – диапазон допустимых параметров погрешности.

Тип охлаждения – масляные и сухие (воздушное охлаждение).

Способ размещения – внутренние или внешние.

ТН делятся также на группы согласно сферам применения и особенностям эксплуатации:

Заземляемый. Этот вариант представляет собой однофазное или трехфазное устройство. Один из его концов должен быть заземлен – это нейтраль обмотки. В маркировках этих моделей присутствует буква «З», например, ЗНОЛ, ЗНОМ.

Наземляемый. Он не нуждается в заземлении. Обязательно изолируются все уровни, зажимы. В зависимости от уровня напряжения, трансформатор может монтироваться на определенной высоте.

Каскадный. Его основная часть первичная обмотка, состоящая из нескольких секций. Они расположены на разном расстоянии от земли в виде каскада. Все части трансформатора соединены между собой дополнительными обмотками. Особенностью каскадных трансформаторов является то, что с увеличением числа элементов, увеличивается количество погрешностей в работе всей системы.

Емкостный. У этого прибора в отличие от других есть емкостный делитель. Этот вид устройств является пассивным, так как не добавляет мощности. Но хорошо справляется с контролем проходящей энергии по сети и выдает высокий КПД.

Двухобмоточный. Имеет две обмотки. Он может преобразовывать одно напряжение U1 в другое U2.

Трехобмоточный. Имеет кроме первичной обмотки еще две вторичные. Отлично заменяет два двухобмоточных прибора, что выгодно с точки зрения экономии затрат на приобретение электрооборудования.

Трансформаторы тока и напряжения

Без электроснабжения невозможно представить нашу жизнь. Чтобы электрическая система работала без сбоев или не пришла в негодность из-за неисправности в кабеле или в силовом оборудовании, её параметры необходимо контролировать, замерять. Диагностика, заключающаяся в проведении электрических измерений, способна выявить причины сбоев и вовремя устранить их. Для этого применяются приборы, измеряющие величины токов, напряжений, мощности.

Но если в электроустановках с низким напряжением возможно подключение измерительных приборов напрямую, непосредственно к измеряемому узлу, то в высоковольтных цепях проблематично отследить параметры без применения измерительных трансформаторов. В электроустановках напряжение доходит до 750 кВ и выше, а токи устанавливаются в десятки килоампер и более. Для «прямого» измерения потребовались бы громоздкое и дорогое оборудование, а иногда измерения вообще не возможно было бы произвести. Также, при обслуживании приборов, напрямую подключенных к сети высокого напряжения, персонал подвергался бы опасности поражения током.

Измерительные трансформаторы тока (ТТ) и напряжения (ТН) способствуют расширению пределов измерений обычных измерительных устройств и одновременно изолируют их от цепей высокого напряжения. Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики подлежат первичной и периодической поверке на правильность работы.

Наиболее часто в сетях переменного тока применяются электромагнитные трансформаторы. Они состоят из магнитопровода, первичной и одной или нескольких вторичных обмоток. ТТ преобразовывает замеряемый высокий ток в малый, а ТН — измеряемое высшее напряжение в низшее. Измерительные трансформаторы включаются в цепи между высоковольтным оборудованием и контрольно-измерительными приборами: амперметрами, вольтметрами, ваттметрами, приборами релейной защиты, телемеханики и автоматики, счетчиками энергии.

Читать еще:  Как прозванивать проводку в машине мультиметром

Зачем нужны измерительные трансформаторы напряжения

Измерительные ТН относятся к преобразователям электрической энергии, которые:

  • трансформируют напряжение участка сети или установки в напряжение приемлемой величины для осуществления измерений с помощью стандартных измерительных устройств, питания релейной защиты, устройств сигнализации, автоматики, телемеханики;
  • изолируя вторичные приборы и цепи, защищают оборудование от высокого напряжения и персонал, имеющего доступ к обслуживанию электроустановок, от поражения током.

Подключение ТН к высоковольтной части электроустановки осуществляется соединением его первичной обмотки «в параллель» к цепи высокого напряжения. Номинал вторичных обмоток трансформатора напряжения составляет обычно 100 В. Так как сопротивление измерительных приборов, подключаемых к вторичной обмотке, велико, током можно пренебречь. Поэтому основной режим работы ТН подобен режиму холостого хода типового силового трансформатора.

Трансформаторы напряжения и их конструкция

Трансформаторы напряжения подразделяются:

  • по числу фаз: на одно- и трехфазные;
  • по числу вторичных обмоток: двухобмоточный ТН имеет одну вторичную обмотку, трехобмоточный — две: основную и дополнительную;
  • по назначению вторичных обмоток: с основной вторичной обмоткой, с дополнительной, со специальной компенсационной — для контроля изоляции цепи;
  • по особенностям исполнений — на трансформаторы защищенного типа, водозащищенного типа (защита от капель и влаги), герметичные, со встроенным предохранителем и с антирезонансной конструкцией;
  • по принципу действия и особенностям конструкций: на каскадные, ёмкостные, заземляемые и не заземляемые.

У каскадного ТН первичная обмотка разделена на несколько поочередно соединенных секций, передача энергии от которых к вторичным обмоткам происходит посредством связующих и выравнивающих обмоток. У ёмкостного ТН в конструкции имеется ёмкостный делитель. Заземляемый однофазный ТН — устройство, у которого один конец первичной обмотки должен быть заземлен. У заземляемого трехфазного ТН должна быть заземлена нейтраль первичной обмотки. Все части первичной обмотки не заземляемого ТН изолированы от земли.

Зачем нужны трансформаторы тока

Трансформатор тока — базовый измерительный аппарат в электроэнергетике, применяемый для преобразования тока первичной сети во вторичный стандартный ток величиной 5 А или 1 А. Первичная обмотка соединяется непосредственно с цепью высокого напряжения последовательным способом подключения. Вторичная обмотка включается во вторичные цепи измерений, защиты и учета. 5А — часто встречающийся номинал вторичной обмотки.

Принцип действия и конструкция трансформаторов тока

Первичная обмотка ТТ включается в разрез линейного провода (последовательно с нагрузкой), в котором измеряется сила тока. Вторичная обмотка замкнута на измерительное устройство с малым сопротивлением. Поэтому, в отличие от силового трансформатора, для которого режим короткого замыкания является аварийным, нормальным режимом для измерительного ТТ являются условия, близкие к КЗ, так как сопротивление во вторичной цепи у него мало.

Через первичную обмотку, имеющую определённое количество витков, течет ток. Вокруг катушки наводится магнитный поток, который улавливается магнитопроводом. Пересекая перпендикулярно ориентированные витки вторичной обмотки, магнитный поток формирует электродвижущую силу. Под влиянием последней возникает ток, протекающий по катушке и нагрузке на выходе. Одновременно на зажимах вторичной цепи образуется падение напряжения.

По конструктиву и применению ТТ условно подразделяются на несколько разновидностей:

      • Опорные монтируются на опорной плоскости.
      • Проходные используются в качестве ввода и устанавливаются в металлических конструкциях, в проемах стен или потолков.
      • Встраиваемые размещаются в полости оборудования: электрических выключателей, генераторов и других электроаппаратов и машин.
      • Разъемные не имеют своей первичной обмотки. Их магнитопроводы из двух половинок, стягиваемых болтами, можно размыкать и закреплять вокруг проводников под током. Эти проводники исполняют роль первичных обмоток.
      • Шинные изготавливаются тоже без первичных обмоток — их роль выполняют пропущенные сквозь окна магнитопроводов ТТ токоведущие шины распредустройств.
      • Накладные надеваются сверху на проходной изолятор.
      • Переносные предназначаются для лабораторных и контрольных измерений.

По выполнению первичной обмотки ТТ подразделяются на одновитковые и многовитковые, а по числу вторичных обмоток — на устройства с одной обмоткой и с несколькими вторичными обмотками (до четырёх, пяти). По числу ступеней трансформации — на одноступенчатые и каскадные.

К общей классификации трансформаторов обоих типов относятся: количество коэффициентов трансформации (однодиапазонные и многодиапазонные), критерии по материалу диэлектрика между первичной и вторичной обмотками и по материалу внешней изоляции — маслонаполненные, газонаполненные, сухие, с литой, фарфоровой и прессованной изоляцией, с вязкими заливочными компаундами, комбинированные бумажно-масляные. ТТ и ТН устанавливаются на открытом воздухе, в закрытых и в подземных установках, на морских и речных судах, внутри оболочек электроустановок и связываются контрольными проводами и кабелями с оборудованием вторичных цепей. По диапазону рабочего напряжения выделяют трансформаторы, функционирующие в устройствах до 1000 В и выше 1000 B. Трансформаторы также классифицируются по классу точности.

Видео про трансформаторы тока

Кратко о назначении трансформатора тока, составе и особенностях конструкции, о схеме и принципе работы. Почему нельзя допускать размыкание вторичных цепей трансформатора тока без предварительного их замыкания накоротко? Почему на напряжение выше 330 кВ изготавливаются ТТ каскадного типа? Об этом и об измерительном трансформаторе тока для подстанции 750 кВ вы узнаете из видео.

Трансформаторы напряжения. Всё, что о них нужно знать

Что необходимо о них знать? Расскажем об этом в предлагаемой статье.

Трансформаторы незаменимы в электроэнергетике, электронике и радиотехнике. Их востребованность объясняется многофункциональностью, простотой устройства, высоким качеством работы (КПД – 99%), долговечной эксплуатацией.

Трансформаторы напряжения – это разновидность трансформаторов, задача которых не преобразовывать, а гальваническая развязка.

От источника электроэнергии или станции ток с высоким напряжением не может использоваться потребителями. Чтобы понизить его на входе устанавливаются понижающие трансформаторы. Они дают возможность работать на расчетном напряжении для бытовой техники, электроприборов и электроники. Их использование позволяет осуществлять работу типовых измерительных приборов. Трансформатор изолирует их от высокого сетевого напряжения, что крайне необходимо для их безопасного обслуживания и эксплуатации.

Читать еще:  Штиль 361 ремонт карбюратора

По назначению они разделяются на два основных вида – повышающие и понижающие. Преобразование напряжения в домашних условиях крайне необходимо. Бытовые приборы, питающиеся от сети 380 или 220 вольт, нуждаются в напряжении в несколько раз меньше. Во избежание выхода из строя бытового оборудования нужны понижающие. При необходимости используют повышающие аналоги.

Кроме главной функции – преобразования напряжения и тока, ТН могут быть источниками питания для автоматики, релейной защиты электролиний от замыкания, сигнализаций и т.п. Также они используются в качестве измерителей напряжения и мощности.

По сути – трансформатор напряжения – это статический электромагнитный прибор, который преобразует переменный ток одного напряжения в переменный ток другого напряжения. По конструктивным решениям и по принципу действия он сходен с силовым аналогом.

Устройство трансформатора напряжения

ТН состоят из двух главных элементов:

Обособленных друг от друга, изолированных обмоток (первичной и вторичной).

На первичную обмотку ТН подается ток, а со вторичной он идет к объекту потребления.

Принцип работы

В основе работы ТН лежит его конструкция и явление электромагнитной индукции, возникающей между элементами:

Трансформатор подсоединяется к сети. На его первичную обмотку поступает ток.

Ток переменного характера проходит по магнитопроводу, вызывает магнитный поток, который в свою очередь проходит через обе обмотки и индуцирует в них ЭДС.

К вторичной обмотке поступает ток, возникший под действием ЭДС.

Величина ЭДС тесно связана с числом витков в каждой обмотке. Меняя число витков можно увеличить или уменьшить напряжение, идущее на потребителя с вторичной обмотки.

Виды трансформаторов напряжения

Существует довольно много трансформаторов напряжения. Их функции соответствуют определенному назначению. Поэтому, прежде чем выбирать тот или иной вариант трансформатора, необходимо определиться, для чего он нужен. Все разнообразие этих приборов отличается друг от друга конструкцией, которая и определяет особенности их эксплуатации.

Все ТН условно делятся на виды по определенным критериям:

Число фаз: одно- и трехфазные.

Количество обмоток – две или три.

Класс точности – диапазон допустимых параметров погрешности.

Тип охлаждения – масляные и сухие (воздушное охлаждение).

Способ размещения – внутренние или внешние.

ТН делятся также на группы согласно сферам применения и особенностям эксплуатации:

Заземляемый. Этот вариант представляет собой однофазное или трехфазное устройство. Один из его концов должен быть заземлен – это нейтраль обмотки. В маркировках этих моделей присутствует буква «З», например, ЗНОЛ, ЗНОМ.

Наземляемый. Он не нуждается в заземлении. Обязательно изолируются все уровни, зажимы. В зависимости от уровня напряжения, трансформатор может монтироваться на определенной высоте.

Каскадный. Его основная часть первичная обмотка, состоящая из нескольких секций. Они расположены на разном расстоянии от земли в виде каскада. Все части трансформатора соединены между собой дополнительными обмотками. Особенностью каскадных трансформаторов является то, что с увеличением числа элементов, увеличивается количество погрешностей в работе всей системы.

Емкостный. У этого прибора в отличие от других есть емкостный делитель. Этот вид устройств является пассивным, так как не добавляет мощности. Но хорошо справляется с контролем проходящей энергии по сети и выдает высокий КПД.

Двухобмоточный. Имеет две обмотки. Он может преобразовывать одно напряжение U1 в другое U2.

Трехобмоточный. Имеет кроме первичной обмотки еще две вторичные. Отлично заменяет два двухобмоточных прибора, что выгодно с точки зрения экономии затрат на приобретение электрооборудования.

Что такое трансформатор тока, его конструкция и принцип работы

Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Рис. 1. Трансформатор тока

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

Рис. 3. Принципиальная схема трансформатора тока

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).

Рис. 4. Схематическое изображение ТТ Рис. 5. Устройство ТТ

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).

Рис. 6. ТТ с разъемным корпусом

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Читать еще:  Как поставить магнитолу в машину

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.

Рис. 7. Принцип действия трансформатора тока

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.

Рис. 8. Пример наружного использования ТТ

  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
  • По величине номинальных напряжений:
    • До 1 кВ;
    • Свыше 1 кВ.

Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

Расшифровка маркировки

Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

  • Т — трансформатор тока;
  • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
  • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
  • ВТ — встроенный в конструкцию силового трансформатора;
  • Л— со смоляной (литой) изоляцией;
  • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
  • Ф — с надежной фарфоровой изоляцией;
  • Ш — шинный;
  • О — одновитковый;
  • М — малогабаритный;
  • К — катушечный;
  • 3 — применяется для защиты от последствий замыкания на землю;
  • У — усиленный;
  • Н — для наружного монтажа;
  • Р — с сердечником, предназначенным для релейной защиты;
  • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
  • М — маслонаполненный. Применяется для наружной установки.
  1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
  2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
  3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
  4. после позиции дробных символов — код варианта конструкционного исполнения;
  5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
  6. цифра на последней позиции — категория размещения.

Схемы подключения

Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

Схема «неполная звезда» применяется для двухфазного соединения.

В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.

Основные схемы подключения:

Основные схемы подключения

  • В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
  • Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
  • Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
  • Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.

Технические параметры

Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.

Коэффициент трансформации

Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.

У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.

Класс точности

Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:

Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.

О назначении

Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.

Ссылка на основную публикацию
Adblock
detector
×
×