C-triada.ru

Строительный журнал
16 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диод зенера что это

Как работает стабилитрон

Диод Зенера или стабилитрон (полупроводниковый стабилитрон) представляет собой особый диод, функционирующий в режиме устойчивого пробоя в условиях обратного смещения p-n перехода. До момента наступления этого пробоя, ток через стабилитрон протекает лишь очень малый, ток утечки, в силу высокого сопротивления запертого стабилитрона.

Но когда наступает пробой, ток мгновенно вырастает, поскольку дифференциальное сопротивление стабилитрона составляет в этот момент от долей до сотен Ом. Таким образом, напряжение на стабилитроне весьма точно поддерживается в определенном диапазоне обратных токов, относительно широком.

Стабилитрон называют диодом Зенера (от англ. Zener diode) в честь ученого, впервые открывшего явление туннельного пробоя, американского физика Кларенса Мэлвина Зенера (1905 — 1993).

Открытый Зенером электрический пробой p-n перехода, связанный с туннельным эффектом, явлением просачивания электронов сквозь тонкий потенциальный барьер, называется теперь эффектом Зенера, который и служит сегодня в полупроводниковых стабилитронах.

Физическая картина эффекта заключается в следующем. При обратном смещении p-n перехода энергетические зоны перекрываются, и электроны могут переходить из валентной зоны p-области в зону проводимости n-области, благодаря электрическому полю, это повышает количество свободных носителей заряда, и обратный ток резко возрастает.

Таким образом, главным назначением стабилитрона является стабилизация напряжения. Промышленностью выпускаются полупроводниковые стабилитроны с напряжениями стабилизации от 1,8 В до 400 В, большой, средней и малой мощности, которые отличаются максимально допустимым обратным током.

На этой базе изготавливают простые стабилизаторы напряжения. На схемах стабилитроны обозначаются символом похожим на символ диода, с тем лишь отличием, что катод стабилитронов изображается в форме буквы «Г».

Стабилитроны скрытой интегральной структуры, с напряжением стабилизации около 7 В — это самые точные и стабильные твердотельные источники опорного напряжения: лучшие их экземпляры характеристически близки к нормальному гальваническому элементу Вестона (эталонный ртутно-кадмиевый гальванический элемент).

К стабилитронам особого типа относятся высоковольтные лавинные диоды («TVS-диоды» и «супрессоры»), которые широко применяются в цепях защиты от перенапряжений всевозможной аппаратуры.

Как видим, стабилитрон, в отличие от обычного диода, работает на обратной ветви ВАХ. В обычном диоде, если к нему приложить обратное напряжение, может возникнуть пробой по одному из трех путей (или по всем сразу): туннельный пробой, пробой лавинный и пробой вследствие теплового разогрева токами утечки.

Тепловой пробой кремниевым стабилитронам не важен, ибо они проектируются так, чтобы или туннельный, или лавинный пробой, либо оба типа пробоя одновременно наступали задолго до тенденции к тепловому пробою. Серийные стабилитроны на данный момент изготавливаются преимущественно из кремния.

Пробой при напряжении ниже 5 В — проявление эффекта Зенера, пробой выше 5 В — проявление лавинного пробоя. Промежуточное напряжение пробоя около 5 В, как правило, является результатом сочетания двух этих эффектов. Напряженность электрического поля в момент пробоя стабилитрона составляет около 30 МВ/м.

Пробой стабилитрона происходит в умеренно легированных полупроводниках р-типа и сильно легированных полупроводниках n-типа. При повышении температуры на стыке уменьшается срыв стабилитрона и вклад лавинного пробоя увеличивается.

Стабилитроны имеют следующие типичные характеристики. Vz – напряжение стабилизации. В документации указываются два значения для этого параметра: максимальное и минимальное значение напряжения стабилизации. Iz – минимальный ток стабилизации. Zz – сопротивление стабилитрона. Izk и Zzk– ток и динамическое сопротивление при постоянном токе. Ir и Vr — максимальный ток утечки и напряжение при заданной температуре. Tc — температурный коэффициент. Izrm — максимальный ток стабилизации стабилитрона.

Стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений (опорных напряжений) в стабилизаторах на транзисторах.

Для получения малых образцовых напряжений стабилитроны включают и в прямом направлении, как обычные диоды, тогда напряжение стабилизации одного стабилитрона будет равно 0,7 — 0,8 вольт.

Максимальная рассеиваемая корпусом стабилитрона мощность, обычно лежит в диапазоне от 0,125 до 1 ватта. Этого, как правило, достаточно для нормальной работы цепей защиты от импульсных помех и для построения маломощных стабилизаторов.

Стабилитрон (диод Зенера)

В данной статье мы подробно поговорим про диод Зенера или стабилитрон. Рассмотрим принцип работы и его характеристики, диодный стабилитрон, напряжение стабилитрона, и схему последовательно соединенных стабилитронов.

Принцип работы

Полупроводниковый диод блокирует ток в обратном направлении, но будет страдать от преждевременного пробоя или повреждения, если обратное напряжение, приложенное к нему, станет слишком высоким.

Тем не менее, стабилитрон или «пробойный диод», как их иногда называют, в основном совпадают со стандартным PN-переходным диодом, но они специально разработаны для того, чтобы иметь низкое и заданное обратное напряжение пробоя, которое использует любое подаваемое обратное напряжение к этому.

Стабилитрон ведет себя так же, как обычный общего назначения диод, состоящий из кремния PN — перехода, и, когда смещены в прямом направлении, то есть анод положительный по отношению к его катоду, он ведет себя так же , как обычный диод сигнал, проводящий номинальный ток.

Однако, в отличие от обычного диода, который блокирует любой поток тока через себя при обратном смещении, то есть катод становится более положительным, чем анод, как только обратное напряжение достигает заранее определенного значения, стабилитрон начинает проводить в обратное направление.

Это связано с тем, что когда обратное напряжение, подаваемое на стабилитрон, превышает номинальное напряжение устройства, в полупроводниковом обедненном слое происходит процесс, называемый лавинным пробоем, и через диод начинает течь ток, чтобы ограничить это увеличение напряжения.

Ток, текущий в настоящее время через стабилитрон, резко возрастает до максимального значения схемы (которое обычно ограничивается последовательным резистором), и после достижения этого ток обратного насыщения остается довольно постоянным в широком диапазоне обратных напряжений. Точка напряжения, в которой напряжение на стабилитроне становится стабильным, называется «напряжением стабилитрона» ( Vz ), а для стабилитронов это напряжение может составлять от менее одного вольт до нескольких сотен вольт.

Читать еще:  6 Ампер какая мощность

Точка, в которой напряжение стабилитрона запускает ток, протекающий через диод, может очень точно контролироваться (с допустимым отклонением менее 1%) на стадии легирования полупроводниковой конструкции диодов, давая диоду определенное напряжение пробоя стабилитрона Vz например, 4,3 В или 7,5 В. Это напряжение пробоя стабилитрона на кривой IV представляет собой почти вертикальную прямую линию.

Характеристики стабилитрона I-V

Стабилитрон используется в его «обратном смещении» или обратном режиме пробоя, т.е. анод диода подключается к отрицательному питанию. Из приведенной выше кривой характеристик I-V видно, что стабилитрон имеет область обратного смещения почти постоянного отрицательного напряжения независимо от величины тока, протекающего через диод, и остается почти постоянной даже при больших изменениях тока, пока ток стабилитронов остается между током пробоя I Z (мин) и максимальным номинальным током I Z (макс.) .

Эта способность к самоконтролю может быть в значительной степени использована для регулирования или стабилизации источника напряжения от изменений напряжения или нагрузки. Тот факт, что напряжение на диоде в области пробоя практически постоянное, оказывается важной характеристикой стабилитрона, так как его можно использовать в простейших типах устройств с регулятором напряжения.

Функция регулятора состоит в том, чтобы обеспечивать постоянное выходное напряжение для нагрузки, подключенной параллельно с ним, несмотря на пульсацию в напряжении питания или изменение тока нагрузки, стабилитрон продолжит регулировать напряжение до тех пор, пока ток диода не будет падать ниже минимального значения I Z (min) в области обратного пробоя.

Диодный стабилитрон

Стабилитроны могут использоваться для получения стабилизированного выходного напряжения с низкой пульсацией в условиях переменного тока нагрузки. Пропуская небольшой ток через диод от источника напряжения через подходящий резистор ограничения тока R S, стабилитрон будет проводить ток, достаточный для поддержания падения напряжения V out .

Мы помним из предыдущих уроков, что выходное напряжение постоянного тока от полу- или двухполупериодных выпрямителей содержит пульсации, наложенные на напряжение постоянного тока, и что при изменении значения нагрузки изменяется и среднее выходное напряжение. Подключив простую схему стабилитрона, как показано ниже, к выходу выпрямителя, можно получить более стабильное выходное напряжение.

Резистор R S соединен последовательно с стабилитроном для ограничения тока, протекающего через диод с источником напряжения, при этом V S подключается через комбинацию. Стабилизированное выходное напряжение V out берется через стабилитрон. Стабилитрон соединен с его катодной клеммой, подключенной к положительной шине источника постоянного тока, поэтому он имеет обратное смещение и будет работать в своем состоянии пробоя. Резистор R S выбран таким образом, чтобы ограничить максимальный ток, протекающий в цепи.

При отсутствии нагрузки, подключенной к цепи, ток нагрузки будет равен нулю I L = 0 , и весь ток цепи проходит через стабилитрон, который, в свою очередь, рассеивает свою максимальную мощность. Также небольшое значение последовательного резистора RS приведет к большему току диода, когда сопротивление нагрузки R L подключено, и будет большим, так как это увеличит требования к рассеиваемой мощности диода, поэтому следует соблюдать осторожность при выборе подходящего значения серии сопротивление, чтобы максимальная номинальная мощность стабилитрона не превышалась в условиях отсутствия нагрузки или высокого импеданса.

Нагрузка подключается параллельно с стабилитроном, поэтому напряжение на R L всегда совпадает с напряжением на стабилитроне V R = V Z. Существует минимальный ток стабилитрона, для которого эффективна стабилизация напряжения, и ток стабилитрона должен всегда оставаться выше этого значения, работающего под нагрузкой в ​​пределах его области пробоя. Верхний предел тока, конечно, зависит от номинальной мощности устройства. Напряжение питания V S должно быть больше, чем V Z .

Одна небольшая проблема с цепями стабилизатора стабилитрона состоит в том, что диод может иногда генерировать электрический шум в верхней части источника постоянного тока, когда он пытается стабилизировать напряжение. Обычно это не является проблемой для большинства устройств, но может потребоваться добавление развязывающего конденсатора большого значения на выходе стабилитрона, чтобы обеспечить дополнительное сглаживание.

Подведем небольшой итог. Стабилитрон всегда работает в обратном смещенном состоянии. Схема регулятора напряжения может быть разработана с использованием стабилитрона для поддержания постоянного выходного напряжения постоянного тока на нагрузке, несмотря на изменения входного напряжения или изменения тока нагрузки. Стабилизатор напряжения Зенера состоит из токоограничивающего резистора R S, соединенного последовательно с входным напряжением V S, с стабилитроном, подключенным параллельно с нагрузкой R L в этом состоянии с обратным смещением. Стабилизированное выходное напряжение всегда выбирается равным напряжению пробоя V Z диода.

Напряжение стабилитрона

Помимо создания единого стабилизированного выходного напряжения, стабилитроны могут также быть соединены друг с другом последовательно, наряду с обычными диодами сигнала кремния для получения множества различных выходных значений опорного напряжения, как показано ниже.

Стабилитроны, соединенные последовательно

Значения отдельных стабилитронов могут быть выбраны в соответствии с применением, в то время как кремниевый диод всегда будет падать примерно на 0,6 — 0,7 вольт в режиме прямого смещения. Напряжение питания V > IN следует, конечно, выше , чем наибольший выход опорного напряжения , а в нашем примере выше, это 19v.

Типичный стабилитрон для общих электронных схем — 500 мВт серии BZX55 или более крупный 1,3 Вт серии BZX85, в которой напряжение стабилитрона задается, например, как C7V5 для диода 7,5 В, что дает эталонный номер диода BZX55C7V5 .

Стабилитроны серии 500 МВт доступны в диапазоне от 2,4 до 100 Вольт и обычно имеют ту же последовательность значений, что и для серии резисторов 5% (E24), а индивидуальные номинальные напряжения для этих небольших, но очень полезных диодов приведены в таблица ниже.

Стандартные напряжения стабилитрона

Мощность стабилитрона BZX55 500 мВт

Стабилитрон

Само название этого прибора “стабилитрон” созвучно слову стабильность или постоянство чего — либо или в чем — либо. В жизни человека очень важна стабильность, стабильность в зарплате, цены в магазине и прочее. В электронике стабильность напряжения питания очень важный, основной параметр, который при настройке или ремонте электронного оборудования проверяют в первую очередь. Напряжение в электрической сети может меняться в зависимости от общей нагрузки, качества электроснабжающих сетей, и еще многих других факторов, но напряжение питания электронных устройств, при этом, должно оставаться неизменным с определенной заданной величиной.

Читать еще:  Как правильно развести заземление по дому

И так, что же такое стабилитрон.

Википедия, тебе даст такое определение:

«Полупроводнико́вый стабилитро́н, или диод Зенера — это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки. «

Все правильно, но слишком заумно.

Я попробую сказать проще

Стабилитрон — это такой полупроводниковый прибор, который стабилизирует напряжение.

Считаю, что на первых порах этого определения достаточно, (а как он стабилизирует напряжение, я расскажу ниже)

Принцип работы стабилитрона

Уважаемый читатель на этом рисунке изображен принцип работы стабилитрона.

Представь, что в некую емкость заливают воду, уровень воды в емкости, должен быть строго определенным, для того чтобы емкость не переполнилась в ней сделана переливная труба по которой вода превышающая заданный уровень будет выливаться из емкости.

Теперь от “сантехники” перейдем к электронике.

Обозначение стабилитрона на принципиальной схеме такое – же, как и у диода, отличие “черточка” катода изображается как буква Г.

Обозначение стабилитрона на схеме

Стабилитрон работает только в цепи постоянного тока, и пропускает напряжение в прямом направлении анод – катод так же — как и диод. В отличи от диода у стабилитрона есть одна особенность, если подать ток в обратном направлении катод – анод, ток через стабилитрон течь не будет, но ток в обратном направлении не будет течь только до тех пор, пока напряжение не превысит заданное значение.

Что является заданным значением напряжения для стабилитрона?

Стабилитрон имеет свои параметры – это напряжение стабилизации и ток. Параметр напряжение — указывает при какой величине напряжения стабилитрон будет пропускать ток в обратном направлении, параметром ток – задана сила тока, при которой стабилитрон может работать не повреждаясь.

Стабилитроны изготавливают для стабилизации напряжения различной величины, например, стабилитрон с обозначением V6.8 будет стабилизировать напряжение в пределах 6.8 Вольта.

Таблица рабочих параметров стабилитронов.

В таблице указаны основные параметры – это напряжение стабилизации и ток стабилизации. Есть и другие параметры, но они тебе пока не нужны. Главное понять суть работы стабилитрона и научиться выбирать нужный тебе для твоих схем и для ремонта радиоэлектроники.

Рассмотрим принципиальную схему объясняющую принцип работы стабилитрона.

Возьмем стабилитрон параметром — напряжение стабилизации 12Вольт. Для того чтобы через стабилитрон начал поступать ток в обратном направлении от катода к аноду, входное напряжение должно быть выше напряжения стабилизации стабилитрона (с запасом). Например — если стабилитрон рассчитан на напряжение стабилизации 12Вольт входное напряжение должно быть не меньше 15Вольт. Балластный резистор Rб ограничивает ток который будет проходить через стабилитрон до номинального. Как видишь, при напряжении, превышающем ток стабилизации стабилитрона, оный начинает сбрасывать лишнее напряжение через себя на минус. Иными словами, стабилитрон, выполняет роль переливной трубы, чем больше напор воды или величина электрического тока, тем сильнее открывается стабилитрон и наоборот при уменьшении напряжения, стабилитрон начинает закрываться, уменьшая прохождения тока через себя.

Эти изменения могут происходить как плавно, так и с огромной скоростью в малых интервалах времени, что позволяет добиться высокого коэффициента стабилизации напряжения.

Если напряжение на входе стабилизатора будет меньше 12Вольт, стабилитрон “закроется” и напряжение на выходе стабилизатора будет “плавать” так – же, как и на входе, при этом никакой стабильности напряжения не будет. Вот почему напряжение входное должно быть больше чем необходимое выходное (с запасом). Приведенная схема называется параметрический стабилизатор . Кто хочет полный расклад по расчету параметрического стабилизатора, пусть посетит ГУГЛ, нам начинающим для первого раза вполне достаточно, не будем заморачивать себя формулами.

Теперь перейдем к лабам (лабораторным работам :).

Перед тобой макет параметрического стабилизатора, на входе и выходе макета имеются вольтметры. Сейчас вольтметр на ВХОДЕ стабилизатора показывает 6 вольт на ВЫХОДЕ стабилизатора практически такое же напряжение. Так как я уже говорил, стабилитрон макета имеет напряжение стабилизации 8и2 вольта, напряжение в 6 Вольт на ВХОДЕ стабилизатора, не превышает напряжение стабилизации стабилитрона, поэтому стабилитрон закрыт.

Теперь я повышаю напряжение на входе стабилизатора до 15 Вольт, напряжение на входе стабилизатора превысило напряжение стабилизации стабилитроне и на выходе стабилизатора достигло заданного напряжения стабилизации 8.2 Вольта таким оно и остается, практически неизменным, даже при резких бросках напряжения, стабилитрон отрабатывает мгновенно, поддерживая стабильность напряжения. Повторяюсь еще раз – “Для того чтобы параметрический стабилизатор работал правильно на входе всегда должно быть напряжение, превышающее напряжение стабилизации стабилитрона т. е. с запасом примерно 15-25%”

Так как ток стабилизации такого параметрического стабилизатора слишком мал, параметрический стабилизатор обычно применяют в блоках питания как стабилизирующий элемент схемы, где кроме самого стабилизатора присутствуют элементы регулировки напряжения, мощные транзисторы.

Пример — схема регулируемого стабилизатора (блока питания).

В современной электронике, параметрические стабилизаторы применяют все реже, в основном используя специальные микросхемы, которые представляют из себя довольно мощные стабилизаторы с очень хорошим коэффициентом стабилизации, они компактны и легко применимы.

Но о них мы поговорим в следующий раз. Тем не менее, параметрические стабилизаторы можно встретить во многих различных электронных схемах, поэтому знать их и понимать элементарно принцип работы нужно.

Читать еще:  Как проверить сопротивление аккумулятора мультиметром

Как проверить стабилитрон

Для проверки стабилитрона, нужно знать как пользоваться мультиметром и воспользоваться методикой проверки полупроводникового диода, если есть возможность можно собрать схему параметрического стабилизатора и проверить стабилитрон в работе, как описано в этой статье. Если у тебя имеется стабилитрон и ты не знаешь его параметры (стерлась надпись на корпусе стаба), собрав схемку параметрического стабилизатора можно определить на какое напряжение стабилизации работает этот неопознанный стаб.

Что такое стабилитрон

Стабилитрон — это специальный полупроводниковый диод, работающий в режиме пробоя и предназначенный для стабилизации напряжения. В зарубежной литературе стабилитрон называют диодом Зенера (Zener diode), по имени Кларенса Зенера, который открыл один из механизмов электрического пробоя. Вообще существует тунельный, лавинный и тепловой пробои. На первых двух стабилитроны работают, а от последнего они выходят из строя. Но о пробоях мы рассуждать не будем, нам нужно понять, что такое стабилитрон, каков принцип его работы и как его можно использовать.

Обозначение стабилитрона

На электрических схемах стабилитрон обозначается символом диода с небольшой закорючкой у катода и буквенным обозначением VD.

Также существуют другие варианты обозначений стабилитрона, которые используются на зарубежных схемах.

Как видно из рисунка, у стабилитрона два вывода — это катод и анод. Следовательно, есть всего два варианта его включения:

— включение в прямом направлении, когда анод подключается к плюсу питания, а катод к минусу,
— включение в обратном направлении, когда анод подключается к минусу питания, а катод к плюсу.

В прямом включении стабилитрон ведет себя как обычный диод, а вот в обратном включении в стабилитроне возникает тот самый пробой. Чтобы понять, что при этом происходит, давайте посмотрим на вольтамперную характеристику стабилитрона.

Как работает стабилитрон

Правая часть графика — характеристика стабилитрона, к которому приложено напряжение в прямом направлении. Левая часть графика — характеристика стабилитрона, к которому приложено обратное напряжение. Похожа на характеристику диода, но пробой (участок, где загибается график) у стабилитрона наступает гораздо раньше диода. Нас интересует левая часть графика.

Вот мы подключили стабилитрон к источнику питания в обратном направлении и начинаем медленно повышать напряжение. Пока приложенное напряжение меньше напряжения пробоя, оно растет, через стабилитрон течет незначительный ток утечки Io (микроамперы, а то и меньше), пробоя нет. На этом участке стабилитрон ведет себя как резистор с очень большим сопротивлением.

В какой-то момент ток начнет возрастать, а напряжение замедлит свой рост — это значит что возникает начальная стадия пробоя стабилитрона. Его сопротивление падает, что можно наблюдать по «загибанию» вольтамперной характеристики.

При дальнейшем повышении напряжения источника питания, ток через стабилитрон будет увеличиваться значительно, а напряжение нет. Стабилитрон ведет себя как резистор с маленьким сопротивлением. Это рабочий участок характеристики, где напряжение на стабилитроне, грубо говоря, постоянно.

Снова повышаем напряжение, ток продолжает расти, стабилитрон начинает греться. Когда ток превысит максимально допустимое значение, стабилитрон перегреется и выйдет из строя.

Если не доводить дело до теплового пробоя, а снизить напряжение до нуля — вольтамперная характеристика повторится в обратном направлении.

Параметры стабилитрона

Какие параметры характеризуют стабилитрон? Базовые параметры — это напряжение стабилизации, минимальный ток стабилизации и мощность рассеяния.

Напряжение стабилизации Uст (в зарубежной литературе Uz, zener voltage) — это, грубо говоря, рабочее напряжение стабилитрона. А если по умному, то это напряжение на стабилитроне при прохождении заданного тока стабилизации.

Как правило, стабилитроны одного типа имеют небольшой разброс напряжения стабилизации, поэтому в документации указывается минимальное, номинальное и максимальное напряжение стабилизации при заданной температуре и токе.


Минимальный ток стабилизации Iст мин (Iz)
— величина тока, при которой стабилитрон «выходит» на свой рабочий участок вольтамперной характеристики. По сути, это точка с которой начинается «излом» характеристики.

Мощность рассеяния стабилитрона P — параметр определяющий максимально допустимый ток стабилитрона. Если принять, что напряжение на стабилитроне в рабочем режиме не меняется, то максимальный ток можно вычислить как P/Uст. Также можно прикинуть максимальный ток в прямом направлении P/Uf = P / 0,7. Мощность рассеяния стабилитрона зависит от его конструкции корпуса (и площади p-n перехода). Обычно этот параметр указывается в разделе «absolute maximum ratings».

Схема включения стабилитрона

Типовая схема включения стабилитрона — это схема простого стабилизатора напряжения. Она включает в себя стабилитрон и резистор для ограничения тока (источник питания и нагрузка на схеме не нарисована). На вход схемы подается нестабилизированное постоянное напряжение большее напряжения стабилизации на несколько вольт, на выходе схемы получается стабилизированное напряжение равное Uz (напряжению стабилизации) используемого стабилитрона.

Такой стабилизатор напряжения можно использовать для питания мало потребляемых схем, потому что из-за резистора он не способен «отдать» в нагрузку большой ток.

Как видно из рисунка, входной ток распределяется между стабилитроном и нагрузкой. Если нагрузка не потребляет ток, стабилитрон «забирает» весь ток на себя, и при большом его значении может перегореть. Если ток нагрузки становиться большим, то стабилитрону «достается» меньше току, напряжение на нем падает и он уже не может выполнять свои функции.

Номинал резистора R1 рассчитывается по формуле:

R = (Uin — Uz)/(Iz + I)

где Uin — входное напряжение (В),
Uz — номинальное напряжение стабилизации (В),
Iz — ток стабилитрона (А),
I — ток нагрузки (А).

Ток стабилитрона Iz нужно выбирать между минимальным и максимальным значениями, исходя из изменений входного напряжения и тока нагрузки. Минимальный ток стабилизации задается в документации, а максимальный ток можно посчитать из максимальной рассеиваемой мощности.

Ссылка на основную публикацию
Adblock
detector