C-triada.ru

Строительный журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чем выше теплопроводность тем

Теплопроводность и коэффициент теплопроводности. Что это такое.

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”. В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

Коэффициент теплопроводности.

Количество тепла, которое проходит через стены (а по научному – интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас в качестве материалов для утепления зданий наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами – Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда) и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие “тепловое сопротивление материала”. Это величина обратная теплопроводности. Если, на пример, теплопроводность пенопласта толщиной 10 см – 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Коэффициент теплопроводности материалов

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Читать еще:  Как обжать телефонный кабель 4 жилы

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

Рассчитывать придется все ограждающие конструкции

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

Редактировать статью Что такое теплопроводность и теплопередача. Теплопроводность металлов и других материалов.

Тепло — это одна из форм энергии, которая заключена в движении атомов в веществе. Энергию этого движения мы и измеряем термометром, хоть и не напрямую.
Как и все другие виды энергии, теплота может передаваться от тела к телу. Происходит это всегда, когда есть тела разной температуры. При этом им необязательно даже находиться в соприкосновении, так существует несколько способов передачи тепла. А именно:

Теплопроводность. Это передача тепла при непосредственном контакте двух тел. (Тело может быть и одно, если его части разной температуры.) При этом чем больше разность температур тел и чем больше площадь их контакта — тем больше тепла передаётся каждую секунду. Помимо этого, количество передаваемого тепла зависит от материала — например, большинство металлов хорошо проводят тепло, а дерево и пластик — гораздо хуже. Величину, характеризующую эту способность передавать тепло, тоже называют теплопроводностью (более корректно – коэффициент теплопроводности), что может приводить к некоторой путанице.

Если необходимо измерить теплопроводность какого-либо материала, то обычно это проводят в следующем эксперименте: изготовляется стержень из интересующего материала и один его конец поддерживается при одной температуре, а другой — при отличной, например более низкой, температуре. Пусть, например, холодный конец будет помещён в воду со льдом — таким образом будет поддерживаться постоянная температура, а измеряя скорость таяния льда можно судить о количестве полученного тепла. Деля количество тепла (а вернее — мощность) на разность температур и поперечное сечение стержня и умножая на его длину, получаем коэффициент теплопроводности, измеряющийся, как следует из вышенаписанного, в Дж*м/К*м 2 *с, то есть в Вт/К*м. Ниже вы видите таблицу теплопроводности некоторых материалов.

Как видно, теплопроводность различается на много порядков. Удивительно хорошо проводят тепло алмаз и оксиды некоторых металлов (по сравнению с другими диэлектриками), плохо проводят тепло воздух, снег и термопаста КПТ-8.

Но мы привыкли считать, что воздух хорошо проводит тепло, а вата — нет, хотя она может на 99% состоять из воздуха. Дело в конвекции. Горячий воздух легче холодного, и «всплывает» наверх, порождая постоянную циркуляцию воздуха вокруг нагретого или сильно охлаждённого тела. Конвекция на порядок улучшает теплопередачу: при её отсутствии было бы очень затруднительно вскипятить кастрюлю воды, не перемешивая её постоянно. А в диапазоне от 0°С до 4°С вода при нагревании сжимается, что приводит к конвекции в противоположном от привычного направлении. Это приводит к тому, что независимо от температуры воздуха, на дне глубоких озёр температура всегда устанавливается равной 4°C

Для уменьшения теплоотдачи из пространства между стенками термосов откачивают воздух. Но надо отметить, что теплопроводность воздуха мало зависит от давления вплоть до 0,01мм рт.ст, то есть границы глубокого вакуума. Этот феномен объясняется теорией газов.

Ещё один способ теплопередачи — это излучение. Все тела излучают энергию в виде электромагнитных волн, но только достаточно сильно нагретые (

600°С) излучают в видимом нами диапазоне. Мощность излучения даже при комнатной температуре достаточно большая — порядка 40мВт с 1см 2 . В пересчёте на площадь поверхности человеческого тела (

1м 2 ) это составит 400Вт. Спасает лишь то, что в привычном нам окружении все тела вокруг также излучают с примерно той же мощностью. Мощность излучения, кстати, сильно зависит от температуры (как T 4 ) , согласно закону Стефана-Больцмана. Расчёты показывают, что, например, при 0°С мощность теплового излучения примерно в полтора раза слабее, чем при 27°С.

В отличие от теплопроводности, излучение может распространяться в полном вакууме — именно благодаря нему живые организмы на Земле получают энергию Солнца. Если теплопередача излучением нежелательна, то её минимизируют, ставя непрозрачные перегородки между холодным и горячим объектами, либо уменьшают поглощение излучения (и испускание, кстати, в ровно той же степени), покрывая поверхность тонким зеркальным слоем металла, например, серебра.

  • Данные по теплопроводности взяты из Wikipedia, а туда они попали из справочников, таких, как:
  • «Физические величины» под ред. И. С. Григорьева
  • CRC Handbook of Chemistry and Physics
  • Более строгое описание теплопроводности можно найти в учебнике по физике, например в «Общей физике» Д.В.Сивухина (Том 2). В 4 томе есть глава, посвящённая тепловому излучению (в т.ч. закону Стефана-Больцмана)

Исследование теплопроводности утеплителей в диапазоне от -190 до +80 °С

На правах рекламы

Ученые независимой лаборатории Всероссийского научно-исследовательского института физико-технических и радиотехнических измерений (ВНИИФТРИ) провели испытания теплопроводности при различных температурах четырех самых популярных в строительстве утеплителей: модифицированного пенополиуретана PIR, полистирола (экструзионного XPS и вспененного EPS) и минераловатного утеплителя (МВ).

Цель испытаний — установить зависимость теплопроводности материалов от температуры в диапазоне от -190 до +80 С.

ВНИИФТРИ — один из ведущих метрологических институтов России, государственный научный центр Российской Федерации. Именно этот институт отвечает за единство измерений и является хранителем эталонов.

По результатам измерений ученые выявили следующие факты:

Факт 1: теплопроводность всех изученных материалов растет, когда повышается температура, и наоборот, падает, когда температура снижается.

Факт 2: лучшим сопротивлением теплопередаче обладает теплоизоляция PIR за счет структуры материала: закрытых ячеек, наполненных газом с крайне низкой теплопроводностью.

Факт 3: обнаружились отклонения показателей теплопроводности материалов от тех, что заявляются производителями. Минимальные отклонения у EPS, максимальные — у минеральной ваты.

Методика испытаний

Испытания проходили на установке для измерения теплопроводности «ТАУ-5» (фотография 1). Эта установка является эталонным средством второго разряда с допускаемой основной погрешностью измерений теплопроводности в 2%.

Установка реализует нестационарный метод нагретого круга и представляет собой резервуар с жидким азотом, в который погружаются исследуемые образцы с нагревателем — датчиком теплопроводности.

Фотография 1. Установка «ТАУ-5»

Из представленных материалов (EPS/XPS/PIR/МВ) подготавливалось по 2 измерительных образца в виде цилиндров диаметром 30 мм, и толщиной 15 мм (фотография 2). Между образцами устанавливался датчик-нагреватель. Таким образом фактические измерения теплопроводности проводились по поверхностям, находившимся в середине плиты.

Фотография 2. Внешний вид образцов

Фотография 3. Установка первой половины образца, датчик-нагреватель, установка датчика, установка второй половины образца.

Измерения и сравнение теплопроводности проводились в атмосфере воздуха при комнатной температуре 295 К (22С) и в атмосфере азота в диапазоне температур от 80 до 360 К (-193/87С) несколькими сериями: от 80 до 360К с шагом 5-10К и от 360 до 80К с аналогичным шагом. Измерения в каждой точке, при определенной температуре, производились в несколько этапов, до установления среднего квадратичного отклонения близким или равным нулю (рис. 1).

Рисунок 1. Результаты сходимости измерений по одной точке при температуре 300К/26С.

Общие результаты испытаний

Результаты испытаний показали, что теплопроводность всех проанализированных утеплителей возрастает с повышением температуры, см. рис. 2.

Рисунок 2. Теплопроводность ТИМ при в диапазоне температур -190/+80С.

Результаты испытаний по отдельным материалам

XPS и EPS

Результаты измерений образцов XPS и EPS (рис. 3, 4) показали, что значения теплопроводности на воздухе и в азоте в начале первой серии совпадали и только после нагрева до 330К (57C) в первой серии снизились на 2 и 2,5% соответственно. Далее последовала стабилизация, причем температурная зависимость теплопроводности имеет относительно гладкий характер.

Большой размах диапазона значений, а также вогнутость графика температурной зависимости говорят о наличии в порах легких газов с высокой теплопроводностью, замерзающих при температурах фазового перехода паров воды в лед.

Что примечательно, температурная зависимость теплопроводности EPS пересекает зависимости XPS (рисунок 2). При -80 о С она ниже, при размораживании газов – выше).

Рисунок 3. Теплопроводность XPS в диапазоне температур -190/+80С.

Рисунок 4. Теплопроводность EPS в диапазоне температур -190/+80С.

Минеральная вата

При измерении образцов минеральной ваты значения теплопроводности открытопористого материала в отличие от закрытопористых на воздухе и в азоте практически совпадали (рис. 5) даже после нагрева до 360К (87С) в первой азотной серии.

Причем температурная зависимость теплопроводности носит относительно гладкий характер, а некоторый разброс объясняется непрочностью и неоднородностью ваты. Большой размах диапазона значений теплопроводности, а также выпуклость температурной зависимости говорят о наличии в порах ваты одного газа — азота. Все остальные газы сорбировались в азот сразу после погружения.

Рисунок 5. Теплопроводность минеральной ваты в диапазоне температур -190/+80С.

Утеплитель PIR

Результаты измерений образцов PIR-изоляции показали, что температурная зависимость теплопроводности носит негладкий характер и имеет два минимума или точки перегиба при -33 и -13С (рис. 6).

Это говорит о наличии в порах материала не менее двух газов (пентан и СО2), которые конденсируются ниже этих температур, тем самым повышая теплопроводность за счет увеличения доли легких молекул в газовой фазе. Однако рост показателя незначителен и больше напоминает стабилизацию значения теплопроводности при понижении температуры.

Рисунок 6. Теплопроводность PIR-изоляции при в диапазоне температур -78/+42С.

Представленные материалы становятся более эффективными в зоне критических отрицательных температур (менее -15С): снижение коэффициента теплопроводности принимает характер стремительного падения.

Столь резкое снижение теплопроводности объясняется очень малым пятном контакта жидкой фазы тяжелых газов, образовавшейся в порах, с твердым веществом стенок. За счет этого изменяются доли легких молекул в газовой фазе и образуется вакуум, замещающий газовую фазу вспенивающего агента, но эти факторы не участвуют в передаче тепла. Как оказалось, вакуум надежно выполняет компенсаторную функцию.

Ссылка на основную публикацию
Adblock
detector