Структурная схема рычажного механизма
Структурная схема рычажного механизма
Лабораторная работа № 1.
Структурный и кинематический анализ рычажных механизмов.
Цель и задачи работы : изучение основных положений и принципов структурного анализа плоских рычажных механизмов; знакомство с правилами составления структурных схем механизмов, условными обозначениями их элементов по ГОСТ-2.770-68, классификацией механизмов по Ассуру; проведение структурного анализа для заданного рычажного механизма, проверка правильности выполненного анализа на ЭВМ.
Основные положения и понятия структурного анализа механизмов.Механизм — система тел, предназначенная для преобразования движения одного или нескольких твердых тел в требуемые движения других твердых тел. Звено — твердое тело или система жестко связанных твердых тел, входящая в состав механизма. Все механизмы можно рассматривать как пространственные. Некоторые механизмы можно рассматривать и как плоские. Плоским называется механизм, звенья которого совершают движения в плоскостях, параллельных какой-либо одной плоскости. Движения звеньев механизма рассматривается в системе координат, связанной с одним из звеньев механизма. Это звено называется стойкой и принимается за неподвижное. Входное звено — звено, которому сообщается исходное движения; выходное — выполняет требуемое движение. Соединение двух соприкасающихся звеньев, допускающее их вполне определенное относительное движение, называется кинематической парой.
Кинематические пары классифицируются по следующим признакам:
виду контакта звеньев — на высшие (с контактом звеньев по линии или точке), и низшие (с контактом звеньев по поверхности);
характеру относительного движения звеньев. Низшие КП подразделяются на вращательные, поступательные и винтовые;
числу связей, наложенных КП на относительное движение звеньев (КП 1. 5 классов);
числу подвижностей в относительном движении звеньев КП — на кинематические пары с 1. 5 подвижностями.
Например, вращательная и поступательная КП являются низшими одноподвижными парами 5-го класса.
При проведении теоретических и экспериментальных исследований пользуются различными расчетными схемами и моделями механизмов и машин. Они обычно отражают только те свойства механизмов и машин, которые существенно влияют на исследуемые характеристики. Так, при анализе структуры механизма используют его структурную схему; при анализе кинематики — кинематическую; динамики — динамическую. Структурная схема механизма должна содержать информацию о числе его звеньев и их взаимном расположении, виде расположении и классе (или числе подвижностей) кинематических пар. Структурную схему механизма вычерчивают по определенным правилам с использованием условных обозначений, регламентированных ГОСТ 2.770-68. Некоторые обозначения, необходимые для выполнения данной работы, приведены в табл.1.1.
Графическое изображение элементов структурных схем
Функциональные возможности механизма, в первую очередь, обусловлены числом подвижностей W , т.е. числом независимых обобщенных координат, однозначно определяющих положение всех звеньев механизма в пространстве. При подсчете W можно рассматривать механизм как пространственный и использовать формулу Сомова- Малышева:
W пр =
(1.1)
где n=(k-1) — число подвижных звеньев механизма; k — общее число звеньев (вместе со стойкой); i — число подвижностей в КП; pi — число КП с i подвижностями в механизме.
Если движение звеньев механизма происходит в параллельных плоскостях, то его можно рассматривать как плоский. В этом случае подвижность определяют по формуле Чебышева:
W пл =. (1.2)
При расчете подвижности механизма в пространстве необходимо учитывать, что при переходе от плоского представления механизма к пространственному число подвижностей каждого звена увеличивается с трех до шести. При этом подвижность некоторых пар может увеличиться. Так в плоском механизме сферические и цилиндрические пары относятся к одноподвижным низшим. В пространственном они становятся: сферическая – трехподвижной, цилиндрическая – двухподвижной.
Большинство механизмов, применяющихся в современных машинах, имеет одну подвижность. При этом достаточно задать движение одному звену для осуществления вполне определенного движения всех остальных. Механизм с W>1 используют реже. Для многих механизмов при расчете по формуле (1.1) получают отрицательное значение или нуль. Однако анализ движения рассматриваемого механизма показывает, что число его подвижностей равно единице. Такое расхождение возникает, если в схеме механизма имеются повторяющиеся или избыточные связи.
Избыточными называют такие связи в механизме, которые дублируют уже имеющиеся и не изменяют его реальной подвижности. Их вводят в структуру механизма с целью повышения его жесткости и точности. Число избыточных связей q в механизме можно определить после задания его подвижности W0 (часто W=1):
Величина q определяет степень статической неопределимости механизма при силовом расчете.
1.2. Классификация рычажных механизмов по Ассуру.
Для плоских механизмов с низшими КП Ассуром Л.В. была разработана система классификации, в которой механизмы состоят из первичных механизмов и структурных групп Ассура (групп нулевой подвижности). Первичным механизмов (рис.1) называют механизм, состоящий из двух звеньев: 1, 0 (одно из них неподвижное — стойка), которые образуют одноподвижную пару (вращательную или поступательную).
Структурная группа, или группа Ассура — кинематическая цепь, которая состоит из подвижных звеньев, соединенных между собой низшими одноподвижными КП, и имеет число подвижностей группы (на плоскости), равное нулю. Звено группы Ассура, входящее в две кинематические пары, одна из которых имеет свободный элемент звена (табл.1.2, пунктирные линии), называется поводком. При синтезе механизма группа присоединяется поводками к звеньям исходного механизма. Если поводки группы присоединить свободными элементами КП к стойке, то образуется плоская статически определимая ферма q гр пл =0 и
Из выражения (1.4) получают соотношение между числом звеньев и числом КП для групп Ассура n гр =(2/3)p гр. При решении этого уравнения в целых числах определяют параметры групп Ассура: 1-го класса 2-ого порядка — n гр =2, p гр =3 (двухповодковые группы); 1-го класса 3-ого порядка — n гр =4, p гр =6 (трехповодковые группы) и т.п.
Сложная группа Ассура не может быть образована комбинацией простых групп более низкого класса или порядка. Некоторые примеры групп Ассура 1-го класса 2-го и 3-го порядков приведены в табл.1.2.
При структурном анализе механизма по Ассуру находят количество первичных механизмов и звенья, образующие их, вид и класс групп Ассура, входящих в его состав. Число первичных механизмов, входящих в состав анализируемого механизма, равно подвижности W пл. После выделения звеньев, образующих первичные механизмы, определяют состав и вид групп Ассура, анализируя оставшиеся звенья, начиная со звеньев, наиболее удаленных от первичных механизмов. Звенья объединяют в группу Ассура и мысленно удаляют ее из схемы механизма. При этом оставшиеся звенья образуют механизм с тем же числом подвижностей W пл и не изменяют характера своего движения.
Структурные группы Ассура.
Группы Ассура 1-го класса 2-го порядка (2-го класса 2-го порядка)*