Обозначение выпрямителя на схеме
Выпрямитель, схема диодного моста
Почти вся электронная аппаратура для своей работы требует определённую величину постоянного напряжения. В электрический сети передаётся синусоидальный сигнал с частотой 50 Гц. Для преобразования сигнала используется свойство полупроводниковых элементов пропускать ток только в одном направлении, а в другом блокировать его прохождение. В качестве преобразователя применяется схема диодного моста, позволяющая получать на выходе сигнал постоянной величины.
Физические свойства p-n перехода
Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).
Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.
Примешанные атомы начинают образовывать, в зависимости от своей природы, свободные электроны или дырки. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный.
Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. Электрон, перемещаясь, занимает свободное место, дырку. При этом на его старом месте также образовывается дырка. В результате чего создаётся два потока движения зарядов: один основной, а другой обратный. Материал с отрицательным зарядом в качестве основных носителей использует электроны, его называют полупроводником n-типа, а с положительным зарядом, использующим дырки, p-типа. В полупроводниках обоих типов неосновные заряды образуют ток, обратный движению основных зарядов.
В радиоэлектронике из материалов для создания p-n перехода используется германий и кремний. При легировании кристаллов этих веществ образуется полупроводник с различной проводимостью. Например, введение бора приводит к появлению свободных дырок и образованию p-типа проводимости. Добавление фосфора, наоборот, создаст электроны, и полупроводник станет n-типа.
Принцип работы диода
Диод — это полупроводниковый прибор, имеющий малое сопротивление для тока в одном направлении, и препятствующий его прохождению в обратном. Физически диод состоит из одного p-n перехода. Конструктивно представляет собой элемент, содержащий два вывода. Вывод, подключённый к p-области, называется анодом, а соединённый с n-областью — катодом.
При работе диода существует три его состояния:
- сигнал на выводах отсутствует;
- он находится под действием прямого потенциала;
- он находится под действием обратного потенциала.
Прямым потенциалом называется такой сигнал, когда плюсовой полюс источника питания подключён к области p-типа полупроводника, другими словами, полярность внешнего напряжения совпадает с полярностью основных носителей. При обратном потенциале отрицательный полюс подключён к p-области, а положительный к n.
В области соединения материала n- и p-типа существует потенциальный барьер. Он образуется контактной разностью потенциалов и находится в уравновешенном состоянии. Высота барьера не превышает десятые доли вольта и препятствует продвижению носителей заряда вглубь материала.
Если к прибору подключено прямое напряжение, то величина потенциального барьера уменьшается и он практически не оказывает сопротивление протеканию тока. Его величина возрастает и зависит только сопротивления p- и n- области. При прикладывании обратного потенциала, величина барьера увеличивается, так как из n-области уходят электроны, а из p-области дырки. Слои обедняются и сопротивление барьера прохождению тока возрастает.
Основным показателем элемента является вольт-амперная характеристика. Она показывает зависимость между приложенным к нему потенциалом и током, протекающим через него. Представляется эта характеристика в виде графика, на котором указывается прямой и обратный ток.
Схема простого выпрямителя
Синусоидальное напряжение представляет собой периодический сигнал, изменяющийся во времени. С математической точки зрения он описывается функцией, в которой начало координат соответствует времени равным нулю. Сигнал состоит из двух полуволн. Находящаяся полуволна в верхней части координат относительно нуля называется положительным полупериодом, а в нижней части — отрицательным.
При подаче переменного напряжения на диод через подключённую к его выводам нагрузку, начинает протекать ток. Этот ток обусловлен тем, что в момент поступления положительного полупериода входного сигнала диод открывается. В этом случае к аноду прикладывается положительный потенциал, а к катоду отрицательный. При смене волны на отрицательный полупериод диод запирается, так как меняется полярность сигнала на его выводах.
Таким образом, получается, что диод как бы отрезает отрицательную полуволну, не пропуская её на нагрузку и на ней появляется пульсирующий ток только одной полярности. В зависимости от частоты приложенного напряжения, а для промышленных сетей она составляет 50 Гц, изменяется и расстояние между импульсами. Такого вида ток называется выпрямленным, а сам процесс —однополупериодным выпрямлением.
Выпрямляя сигнал, используя один диод, можно питать нагрузку, не предъявляющую особых требований к качеству напряжения. Например, нить накала. Но если запитать, например, приёмник, то появится низкочастотный гул, источником которого и будет промежуток, возникающий между импульсами. В некоторой мере для избавления от недостатков однополупериодного выпрямления совместно с диодом применяется параллельно включённый нагрузке конденсатор. Этот конденсатор будет заряжаться при поступлении импульсов и разряжаться при их отсутствии на нагрузку. А значит, чем больше значение ёмкости конденсатора, тем ток на нагрузке будет более сглажен.
Но наибольшего качества сигнала возможно достичь, если использовать для выпрямления одновременно две полуволны. Устройство, позволяющее это реализовать, получило название диодный мост, или по-другому — выпрямительный.
Диодный мост
Такое устройство представляет собой электрический прибор, служащий для преобразования переменного тока в постоянный. Словосочетание «диодный мост» образуется из слова «диод», что предполагает использование в нём диодов. Схема диодного моста выпрямителя зависит от сети переменного тока, к которой он подключается. Сеть может быть:
В зависимости от этого и выпрямительный мост называется мостом Гретца или выпрямителем Ларионова. В первом случае используется четыре диода, а во втором прибор собирается уже на шести.
Первая схема выпрямительного прибора собиралась на радиолампах и считалась сложным и дорогим решением. Но с развитием полупроводниковой техники диодный мост полностью вытеснил альтернативные способы выпрямления сигнала. Вместо диодов редко, но ещё применяются селеновые столбы.
Конструкции и характеристики прибора
Конструктивно выпрямительный мост выполняется из набора отдельных диодов или литого корпуса, имеющего четыре вывода. Корпус может быть плоского или цилиндрического вида. По принятому стандарту, значками на корпусе прибора отмечаются выводы подключения переменного напряжения и выходного постоянного сигнала. Выпрямители, имеющие корпус с отверстием, предназначены для крепления на радиатор. Основными характеристиками выпрямительного моста являются:
- Наибольшее прямое напряжение. Это максимальная величина, при которой параметры прибора не выходят за границы допустимых.
- Наибольшее допустимое обратное напряжение. Это максимальное импульсное напряжение, при котором мост длительно и надёжно работает.
- Наибольший рабочий ток выпрямления. Обозначает средний ток, протекающий через мост.
- Максимальная частота. Частота подаваемого на мост напряжения, при которой прибор работает эффективно и не превышает допустимый нагрев.
Превышение значений характеристик выпрямителя приводит к резкому сокращению срока его службы или пробою p-n переходов. Необходимо отметить такой момент, что все параметры диодов указываются для температуры окружающей среды 20 градусов. К недостаткам применения мостовой схемы выпрямления относят большее падение напряжения, по сравнению с однополупериодной схемой, и более низкое значение коэффициента полезного действия. Для уменьшения величины потерь и снижения нагрева мосты часто изготавливают с применением быстрых диодов Шотки.
Схема подключения устройства
На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами. Если выпрямитель собран из отдельных диодов, то рядом с каждым ставится обозначение VD и цифра, обозначающая порядковый номер диода в схеме. Редко используются надписи VDS или BD.
Диодный выпрямитель может подключаться напрямую к сети 220 вольт или после понижающего трансформатора, но схема включения его остаётся неизменной.
При поступлении сигнала в каждом из полупериодов ток сможет протекать только через свою пару диодов, а противоположная пара будет для него заперта. Для положительного полупериода открытыми будут VD2 и VD3, а для отрицательного VD1 и VD4. В итоге на выходе получится постоянный сигнал, но его частота пульсации будет увеличена в два раза. Для того чтобы уменьшить пульсацию выходного сигнала, используется, как и в случае с одним диодом, параллельное включение конденсатора С1. Такой конденсатор ещё называют сглаживающим.
Но случается так, что диодный мост ставится не только в переменную сеть, но и подключается в уже выпрямленную. Для чего нужен диодный мост в такой цепи, станет понятно, если обратить внимание в каких схемах используется такое его включение. Эти схемы связаны с использованием чувствительных радиоэлементов к переполюсовке питания. Использование моста позволяет осуществить простую, но эффективную защиту «от дурака». В случае ошибочного подключения полярности питания радиоэлементы, установленные за мостом, не выйдут из строя.
Проверка на работоспособность
Такой тип электронного прибора можно проверить, не выпаивая из схемы, так как в конструкциях устройств никакое его шунтирование не используется. В случае выпрямителя, собранного из диодов, проверяется каждый диод в отдельности. А в случае с монолитным корпусом измерения проводятся на всех четырёх его выводах.
Суть проверки сводится к прозвонке мультиметром диодов на короткое замыкание. Для этого выполняются следующие действия:
- Мультиметр переключается в режим позвонки диодов или сопротивления.
- Штекер одного провода (чёрного) вставляется в общее гнездо тестера, а второго (красного) в гнездо проверки сопротивления.
- Щупом, подключённым чёрным проводом, дотроньтесь до первой ножки, а щупом красного провода до третьего вывода. Тестер должен показать бесконечность, а если поменять полярность проводов, то мультиметр покажет сопротивление перехода.
- Минус тестера подается на четвёртую ногу, а плюс на третью. Мультиметр покажет сопротивление, при смене полярности бесконечность.
- Минус на первую ногу, плюс на вторую. Тестер покажет открытый переход, при смене – закрытый.
Такие показания тестера говорят об исправности выпрямителя. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром. Но при этом придётся подать питание на схему и замерить напряжение на сглаживающем конденсаторе. Его величина должна превышать входное в 1,4 раза.
Обозначения диодов и принцип работы, ВАХ
Выпрямительные диоды — это полупроводниковые приборы, которые имеют один p-n переход и два металлических вывода. Вся система заключена в пластмассовом, металлическом, стеклянном или металлокерамическом корпусе. Предназначены для преобразования переменного тока в постоянный.
Обозначение и расшифровка диодов
Обозначение выпрямительного диода на схеме согласно “ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые”. В приложении данного ГОСТа указаны размеры в модульной сетке. Выглядит это следующим образом:
Существуют различные варианты обозначения диодов.
Согласно ОСТ 11366.919-81 следующее буквенно-цифровое обозначение:
- 1) первая буква или цифра указывает на материал:
- 1 (Г) — германий Ge
- 2 (К) — кремний Si
- 3 (А) — галлий Ga
- 4 (И) — индий In
- 2) Вторая буква — это подкласс полупроводникового прибора. Для нашего случая — это буква Д.
- 3) Третья цифра — функционал элемента в зависимости от класса (диоды, варикапы, стабилитроны и др.).
Например, для выпрямительных диодов (Д):
101. 199 — диоды малой мощности с постоянным или средним значением прямого тока менее 0,3А.
201. 299 — диоды средней мощности с постоянным или средним значением прямого тока от 0,3 до 10А.
Также существуют диоды большой мощности с током более 10А. Отвод тепла у диодов малой мощности осуществляется через корпус, у диодов средней и большой мощности через теплоотводящие радиаторы.
До 1982 года была другая классификация:
- первая Д — характеризовала весь класс диодов
- далее шел цифровой код:
- от 1 до 100 — для точечных германиевых диодов
- от 101 до 200 — для точечных кремниевых диодов
- от 201 до 300 — для плоскостных кремниевых диодов
- от 301 до 400 — для плоскостных германиевых диодов
- от 401 до 500 — для смесительных СВЧ детекторов
- от 501 до 600 — для умножительных диодов
- от 601 до 700 — для видеодетекторов
- от 701 до 749 — для параметрических германиевых диодов
- от 750 до 800 — для параметрических кремниевых диодов
- от 801 до 900 — для стабилитронов
- от 901 до 950 — для варикапов
- от 951 до 1000 — для туннельных диодов
- от 1001 до 1100 — для выпрямительных столбов
- третья цифра — разновидность групп однотипных приборов
Система JEDEC (США)
- первая цифра — число p-n переходов (1 — диод; 2 — транзистор; 3 — тиристор)
- далее N (типа номер) и серийный номер
- после может идти пару цифр про номиналы и отдельные характеристики диода
Система Pro Electron (Европа)
По данной системе приборы делятся на промышленные и бытовые. Бытовые кодируются двумя буквами и тремя цифрами от 100 до 999. У промышленных приборов будет идти три буквы и две цифры от 10 до 99. Для диодов:
- 1) первая буква:
- A — германий Ge
- B — кремний Si
- C — галлий Ga
- R — другие полупроводники
- 2) Вторая буква — это буква A, указывающая на маломощные импульсные и универсальные диоды.
- 3) Третья буква отвечает за принадлежность элемента к сфере специального применения (промышленность, военная). “Z”, “Y”, “X” или “W”.
- 4) Четвертая — это 2х, 3х или 4х-значный серийный номер прибора.
- 5) Дополнительный код — в нем для выпрямительных диодов указывается максимальная амплитуда обратного напряжения.
Система JIS (Япония)
Применяется в странах Азии и тихоокеанского региона.
- первая цифра — число переходов (0 — фототранзистор, фотодиод; 1 — диод; 2 — транзистор; 3 — тиристор)
- затем буква S (semiconductors) — полупроводниковые
- затем буква, отвечающая за тип прибора:
- A — ВЧ транзисторы p-n-p
- B — НЧ транзисторы p-n-p
- С — ВЧ транзисторы n-p-n
- D — НЧ транзисторы n-p-n
- E — диоды
- F — тиристоры
- G — диоды Ганна
- H — однопереходные транзисторы
- J — полевые транзисторы с p-каналом
- K — полевые транзисторы с n-каналом
- M — симметричные тиристоры
- Q — светоизлучающие диоды
- R — выпрямительные диоды
- S — малосигнальные диоды
- T — лавинные диоды
- V — варикапы, p-i-n диоды, диоды с накоплением заряда
- Z — стабилитроны, стабисторы, ограничители
В нашем случае будет буква R.
- Рег. номер прибора
- Модификация прибора
- Далее может идти индекс, описывающий специальные свойства
Существуют и специальные обозначения от фирм-изготовителей, которые отличаются от приведенных выше.
Принцип действия выпрямительного диода
Полупроводники по своим электрическим свойствам являются чем-то средним между проводниками и диэлектриками.
Как ведет себя диод при прямом и обратном включении
Прямое направление — направление постоянного тока, в котором диод имеет наименьшее сопротивление.
Обратное направление — направление постоянного тока, в котором диод имеет наибольшее сопротивление.
Рассмотрим поведение тока в цепи при прямом и обратном включении на переменное и постоянное напряжение. Изначально мы будем иметь синусоиду, которая получается от источника переменного тока.
При таких способах подключения отсекается половина синусоиды положительная или отрицательная. На выходе — пульсирующий переменный ток одного знака (считай, постоянный, только загвоздка в том, что им никто не пользуется).
- анод (для прямого включения подключаем к плюсу), основание треугольника
- катод (подключаем к минусу для прямого включения) палочка
Ток течет от анода к катоду, некоторые прибегают к сравнению с воронкой. В широкое горлышко жидкость проходит быстрее, чем в узкое. Принцип работы заключается в пропускании тока при прямом включении и запирании диода при обратном включении (отсутствии тока). Всё дело в запирающем слое, который испаряется или расширяется в зависимости от способа подключения диода.
Рассмотрим поведение диода в схеме постоянного тока. На левом изображении ток, напряжение проходит — лампочка горит (черная) — это прямое включение. На правом изображении диод не пропускает достаточно тока и напряжения для загорания лампочки — обратное включение.
ВАХ выпрямительных диодов (Ge, Si)
Вольт-амперные характеристики диодов представляют собой графики зависимостей прямых и обратных токов (Y) и напряжений (X) при различных температурах.
При подаче обратного напряжения, превышающего пороговое значение, величина обратного тока возрастает и происходит пробой p-n слоя. Стоит обратить внимание и на порядки чисел по осям. Величины обратного тока на порядок меньше прямого. Значения прямого напряжения на порядок меньше обратного. По достижении порогового значения прямого напряжения прямой ток начинает увеличиваться лавинообразно.
Разница между диодами в том, что обратный ток кремниевых диодов меньше, чем у германиевых. Поэтому, за счет большего тока, у Ge диодов пробой носит тепловой характер, у Si — преобладает электрический пробой. Мощность, рассеиваемая при одинаковых токах у германиевых диодов меньше.
Сохраните в закладки или поделитесь с друзьями
Условные графические и буквенные обозначения электрорадиоэлементов
Почти все УОС, все изделия радиоэлектроники и электротехники, изготавливаемые промышленными организациями и предприятиями, домашними мастерами, юными техниками и радиолюбителями, содержат в своем составе определенное количество разнообразных покупных ЭРИ и элементов, выпускаемых в основном отечественной промышленностью. Но за последнее время наблюдается тенденция применения ЭРЭ и комплектующих изделий зарубежного производства. К ним можно отнести в первую очередь ППП, конденсаторы, резисторы, трансформаторы, дроссели, электрические соединители, аккумуляторы, ХИТ, переключатели, установочные изделия и некоторые другие виды ЭРЭ.
Применяемые покупные комплектующие или самостоятельно изготавливаемые ЭРЭ обязательно находят свое отражение на принципиальных и монтажных электрических схемах устройств, в чертежах и другой ТД, которые выполняются в соответствии с требованиями стандартов ЕСКД.
Особое внимание уделяется принципиальным электрическим схемам, которые определяют не только основные электрические параметры, но и все входящие в устройства элементы и электрические связи между ними. Для понимания и чтения принципиальных электрических схем необходимо тщательно ознакомиться с входящими в них элементами и комплектующими изделиями, точно знать область применения и принцип действия рассматриваемого устройства. Как правило, сведения о применяемых ЭРЭ указываются в справочниках и спецификации — перечне этих элементов.
Связь перечня комплектующих ЭРЭ с их условными графическими обозначениями осуществляется через позиционные обозначения.
Для построения условных графических обозначений ЭРЭ используются стандартизованные геометрические символы, каждый из которых применяют отдельно или в сочетании с другими. При этом смысл каждого геометрического образа в условном обозначении во многих случаях зависит от того, в сочетании с каким другим геометрическим символом он применяется.
Стандартизованные и наиболее часто применяемые условные графические обозначения ЭРЭ в принципиальных электрических схемах приведены на рис. 1. 1. Эти обозначения касаются всех комплектующих элементов схем, включая ЭРЭ, проводники и соединения между ними. И здесь важнейшее значение приобретает условие правильного обозначения однотипных комплектующих ЭРЭ и изделий. Для этой цели применяются позиционные обозначения, обязательной частью которых является буквенное обозначение вида элемента, типа его конструкции и цифровое обозначение номера ЭРЭ. На схемах используется также дополнительная часть обозначения позиции ЭРЭ, указывающая функцию элемента, в виде буквы. Основные виды буквенных обозначений элементов схем приведены в табл. 1.1.
Обозначения на чертежах и схемах элементов общего применения относятся к квалификационным, устанавливающим род тока и напряжения,. вид соединения, способы регулирования, форму импульса, вид модуляции, электрические связи, направление передачи тока, сигнала, потока энергии и др.
В настоящее время у населения и в торговой сети находится в эксплуатации значительное количество разнообразных электронных приборов и устройств, радио- и телевизионной аппаратуры, которые изготавливаются зарубежными фирмами и различными акционерными обществами. В магазинах можно приобрести различные типы ЭРИ и ЭРЭ с иностранными обозначениями. В табл. 1. 2 приведены сведения о наиболее часто встречающихся ЭРЭ зарубежных стран с соответствующими обозначениями и их аналоги отечественного производства.
Эти сведения впервые публикуются в таком объеме.
Рис 1.1 Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации
1— транзистор структуры р-n-р в корпусе, общее обозначение;
2— транзистор структуры n-р-n в корпусе, общее обозначение,
3 — транзистор полевой с p-n переходом и п каналом,
4 — транзистор полевой с p-n переходом и р каналом,
5 — транзистор однопереходный с базой п типа, б1, б2 — выводы базы, э — вывод эмиттера,
7 — диод выпрямительный,
8 — стабилитрон (диод лавинный выпрямительный) односторонний,
9 — диод тепло-электрический,
10 — динистор диодный, запираемый в обратном направлении;
11 — стабилитрон (диодолавинный выпрямительный) с двусторонней проводимостью,
12 — тиристор триодный;
14 — переменный резистор, реостат, общее обозначение,
15 — переменный резистор,
16 — переменный резистор с отводами,
17 — подстроечный резистор-потенциометр;
18 — терморезистор с положительным температурным коэффициентом прямого нагрева (подогрева),
20 — конденсатор постоянной емкости, общее обозначение;
21 — конденсатор постоянной емкости поляризованный;
22 — конденсатор оксидный поляризованный электролитический, общее обозначение;
23 — резистор постоянный, общее обозначение;
24 — резистор постоянный с номинальной мощностью 0, 05 Вт;
25 — резистор постоянный с номинальной мощностью 0, 125 Вт,
26 — резистор постоянный с номинальной мощностью 0, 25 Вт,
27 — резистор постоянный с номинальной мощностью 0, 5 Вт,
28 — резистор постоянный с номинальной мощностью 1 Вт,
29 — резистор постоянный с номинальной мощностью рассеяния 2 Вт,
30 — резистор постоянный с номинальной мощностью рассеяния 5 Вт;
31 — резистор постоянный с одним симметричным дополнительным отводом;
32 — резистор постоянный с одним несимметричным дополнительным отводом;
Рис 1.1 Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации
33 — конденсатор оксидный неполяризованный;
34 — конденсатор проходной (дуга обозначает корпус, внешний электрод);
35 — конденсатор переменной емкости (стрелка обозначает ротор);
36 — конденсатор подстроечный, общее обозначение;
38 — конденсатор помехоподавляющий;
40 — туннельный диод;
41 — лампа накаливания осветительная и сигнальная;
42 — звонок электрический;
43 — элемент гальванический или аккумуляторный;
44 — линия электрической связи с одним ответвлением;
45 — линия электрической связи с двумя ответвлениями;
46 — группа проводов, подключенных к одной точке электрическою соединения. Два провода;
47 — четыре провода, подключенных к одной точке электрическою соединения;
48 — батарея из гальванических элементов или батарея аккумуляторная;
49 — кабель коаксиальный. Экран соединен с корпусом;
50 — обмотка трансформатора, автотрансформатора, дросселя, магнитного усилителя;
51 — рабочая обмотка магнитного усилителя;
52 — управляющая обмотка магнитного усилителя;
53 — трансформатор без сердечника (магнитопровода) с постоянной связью (точками обозначены начала обмоток);
54 — трансформатор с магнитодиэлектрическим сердечником;
55 — катушка индуктивности, дроссель без магнитопровода;
56 — трансформатор однофазный с ферромагнитным магнитопроводом и экраном между обмотками;
57 — трансформатор однофазный трехобмоточный с ферромагнитным магнитопроводом с отводом во вторичной обмотке;
58 — автотрансформатор однофазный с регулированием напряжения;
60 — предохранитель выключатель;
62 — соединение контактное разъемное;
63 — усилитель (направление передачи сигнала указывает вершина треугольника на горизонтальной линии связи);
64 — штырь разъемного контактного соединения;
Рис 1.1 Условные графические обозначения ЭРЭ в схемах электрических радиотехнических и автоматизации
65 — гнездо разъемного контактного соединения,
66 — контакт разборного соединения например с помощью зажима
67 — контакт неразборного соединения, например осуществленного пайкой
68 — выключатель кнопочный однополюсный нажимной с замыкающим контактом самовозвратом
69 — контакт коммутационного устройства размыкающий, общее обозначение
70 — контакт коммутационного устройства (выключателя, реле) замыкающий, общее обозначение. Выключатель однополюсный.
71 — контакт коммутационного устройства переключающий, общее обозначение. Однополюсный переключатель на два направления.
72— контакт переключающий трехпозиционный с нейтральным положением
73 — контакт замыкающий без самовозврата
74 — выключатель кнопочный нажимной с размыкающим контактом
75 — выключатель кнопочный вытяжной с замыкающим контактом
76 — выключатель кнопочный нажимной с возвратом кнопки,
77 — выключатель кнопочный вытяжной с размыкающим контактом
78 — выключатель кнопочный нажимной с возвратом посредством вторичного нажатия кнопки,
79 — реле электрическое с замыкающим размыкающим и переключающим контактами,
80 — реле поляризованное на одно направление тока в обмотке с нейтральным положением
81 — реле поляризованное на оба направления тока в обмотке с нейтральным положением
82 — реле электротепловое без самовозврата, с возвратом посредством вторичного нажатия кнопки,
83 — разъемное однополюсное соединение
84 — гнездо пятипроводного контактного разъемного соединения
85 — штырь контактного разъемного коаксиального соединения
86 — гнездо контактного соединения
87 — штырь четырехпроводного соединения
88 — гнездо четырехпроводного соединения
89 — перемычка коммутационная размыкающая цепь
Таблица 1.1. Буквенные обозначения элементов схем
Обозначение выпрямителя на схеме
Выпрямители. Как и почему.
Автор:
Опубликовано 01.01.1970Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему щастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пжалста.
Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,
Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.
а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:
Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.
Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.
Ну а теперь к делу.
1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, много большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:
Для однополупериодного выпрямителя формула несколько отличается:
Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.
Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, ВДля справки — допустимые пульсации:
Микрофонные усилители — 0,001. 0,01%
Цифровая техника — пульсации 0,1. 1%
Усилители мощности — пульсации нагруженного блока питания 1. 10% в зависимости от качества усилителя.Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.