Лазерный дальномер схема принципиальная - Строительный журнал
C-triada.ru

Строительный журнал
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лазерный дальномер схема принципиальная

Статьи

Лазерный дальномер — прибор для измерения расстояний с применением лазерного луча. По принципу действия дальномеры бывают импульсные и фазовые, иногда выделяют фазо-имульсные. Последние в данной статье рассмотрены не будут, т.к. в изговлении строительных и геодезических приборов не используются.

для увеличения картинки кликните по ней

Рис.1 Общий принцип устройства дальномеров

Импульсный лазерный дальномер — это устройство, состоящее из импульсного лазера и детектора излучения. Способность электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение: L = ct/2, где L — расстояние до обьекта, с — скорость распространения излучения, t — время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Ясно, что чем короче импульс, тем лучше.

Рис. 2 Принцип действия импульсного дальномера

При фазовом методе дальнометрирования излучение, применяемое для измерений расстояний, моделируется по синусоидальному закону. Обычно используют синусоидальный сигнал с частотой от 10 до 150 МГц (измерительная частота). При этом интенсивность излучения меняется в зависимости от фазы в значительных пределах. При непрерывном модулированном зондирующем сигнале оптическое излучение используется в качестве несущей, которая преобразуется более низкой частотой. В зависимости от дальности до цели изменяется фаза отраженного сигнала. По величине сдвига фазы определяется дальность до цели.

Сущность фазового метода дальнометрирования состоит в следующем. Представьте себе, что излучение газового лазера промодулировано таким образом по амплитуде, что на каждый километр до цели укладывается один период волны, т. е. что сначала амплитуда возрастет до максимума, затем упадет до нуля, изменит знак, возрастет до максимума и снова упадет до нуля. Очевидно, что и в обратном направлении волна пойдет аналогичным образом и придет на приемное устройство в той же фазе, что и была послана. Если мы теперь переместим цель в направлении дальномера на четверть километра, то в районе цели амплитуда света будет иметь максимум, так как она пришла со сдвигом в четверть волны. По величине сдвига фазы можно судить о том, на какое расстояние переместилась цель. Отраженное целью излучение придет на приемник также со сдвигом фазы. Величина сдвига фазы говорит о расстоянии до цели.

Рис. 3 Принципиальная схема фазового дальномера,
где генератор — газовый лазер

На рис. 1 показана принципиальная схема фазового дальномера. Принцип его работы состоит в следующем. Излучение лазера модулируется с определенной частотой и с помощью оптической системы, состоящей из двух линз, направляется на цель. Отраженное целью излучение принимается той же оптической системой и с помощью зеркала направляется на приемник (ФЭУ), усиливается и направляется на блок измерения разности фаз. На пот блок еще раньше пришел сигнал от генерагора, управляющего модулятором. Происходит измерение разности фаз, и информация поступает на индикаторы.

В упрощенном виде принцип работы дальномера выглядит следующим образом:

Рис.4 Общий принцип работы фазового дальномера

В современных тахеометрах (в большинстве) устанавливается фазовый дальномер, зачастую более точный.

Более подробную информацию с большим уклоном в физические особенности процессов можно почитать здесь -> Презентация на тему «Дальномеры»

В каталоге компании, вы сможете подобрать дальномер именно под ваши цели и задачи — перейти

Ультразвуковой дальномер

Приветствую всех. Попал мне в руки недавно ультразвуковой датчик, который измеряет расстояние до объекта — US-100. Подобную вещь можно приобрести на торговых интернет площадках. На рынках своего города таких игрушек в продаже не удалось найти. Было решено построить схему на основе такого датчика на распространенном микроконтроллере AVR ATmega8. Назначение устройства состоит в измерении расстояния до объекта, а также измерения температуры. К слову о температуре. Модель US-100 это ультразвуковой датчик с температурной компенсацией. Скорость распространения звуковой (ультразвуковой) волны при разных температурах будет отличаться. Измерение датчика основано на времени прохождения звуковой волны от объекта до приемника датчика. Температурная компенсация, скорее всего не полностью, устранит погрешность вызванную температурой окружающей среды.

При рассмотрении печатной платы, можно сделать заключение об источнике измерения температуры: термометр находится в микросхеме или измерение температуры идет за счет диода, расположенного на краю платы. При измерении температуры диодом используется его P-N переход и связано это с температурным коэффициентом проводимости. С большой уверенностью это второй вариант, так как при работе ниже приведенной схемы при касании пальцами этого диода, температура изменяется. Так что при измерении лучше всего стараться руками не трогать датчик, чтобы получить более точные данные о расстоянии.

Для измерения датчик использует 2 головки, напоминающие большой микрофон или маленький динамик. По сути это и то, и то. Одна из головок излучает ультразвуковую волну, вторая принимает отраженный сигнал ультразвуковой волны. По времени прохождения определяется пройденное расстояние. По видимому ограничение измеряемого расстояния в 4,5 метра обусловлена мощностью излучателя.

Что относительно общения датчика с микроконтроллером, модель US-100 имеет два возможных интерфейса, выбираемые перемычкой на задней стороне платы датчика. Если перемычка стоит выбран интерфейс UART, если перемычка снята, используется интерфейс или режим работы GPIO. В первом случае для общения с микроконтроллером используется либо аппаратные средства микроконтроллера, либо программные. Во втором случае принимать и передавать данные придется только вручную. В схеме устройства задействуем более простой режим работы с использованием UART интерфейса.

Необходимо уточнить нюансы по распиновке и подключению датчика к микроконтроллеру. Обычно при передачи данных по UART линии Rx и Tx подключаются крест накрест — Rx на Tx, а Tx на Rx. Данный ультразвуковой датчик же нужно подключать в соответствии с подписанными контактами на печатной плате Rx на Rx, а Tx на Tx. Китайцы отожгли, согласен. Прежде чем это определилось, пришлось долго мучиться и в конце концов придти к этому. Итак, при работе по UART, для инициализации одного измерения расстояния ультразвуковому датчику US-100 необходимо на вывод Trig/Tx передать значение 0x55, что соответствует символу «U». В ответ датчик передаст два байта информации о расстоянии на вывод Echo/Rx — первый байт — это старшие 8 бит, второй байт — младшие 8 бит. Единицы измерения расстояния — миллиметры. Чтобы два байта перевести в одно значение расстояния, необходимо первый байт умножить на 256 и прибавить второй байт. Необходимо делать таким образом, потому что при переполнении младшего байта, старший байт увеличивается на единицу. Чтобы вывести текущее значение температуры окружающей среды, необходимо передать значение 0x50, что соответствует символу «P». В ответ датчик передаст значение температуры. Фактическое значение температуры будет равно полученному значению от датчика отнять 45.

Читать еще:  Дровокол механический пружинный своими руками чертежи

Параметры ультразвукового датчика US-100:

  • напряжение питания — 2,4 — 5,5 вольт постоянного напряжения
  • потребляемый ток в режиме ожидания — 2 мА
  • рабочая температура — минус 20 — плюс 70 С
  • угол обзора — 15 градусов
  • интерфейс — GPIO или UART
  • измеряемое расстояние — от 2 см до 450 см
  • погрешность — плюс минус 3 мм + 1%

Конфигурация UART для датчика: 9600 baud rate, 8 data bits, parity: none, 1 stop bit.

Перейдем к схеме устройства.

Схема ультразвукового дальномера построена на основе микроконтроллера Atmega8 и ультразвуковом датчике US-100. Питание схема берется от линейного стабилизатора напряжения L7805, его можно заменить отечественным аналогом КР142ЕН5А, конденсаторы в обвязке стабилизатора обязательны, хотя может работать и без них. Некоторые стабилизаторы просто не запускаются без конденсаторов. Линейный стабилизатор можно заменить на импульсный, например MC34063 или LM2576, но придется немного изменить схему согласно подключению импульсных стабилизаторов в схеме. Конденсаторы С5-С7 необходимы для обеспечения стабильности работы микроконтроллера и датчика. Номиналы всех конденсаторов можно варьировать в разумных пределах. Резистор R2 необходим для предотвращения самопроизвольного перезапускания микроконтроллера и служит подтяжкой положительного питания на вывод reset. Резистор R1 регулирует контраст LCD-дисплея. В качестве информационной панели был взят жидкокристаллический (ЖК или по другому LCD) экран SC1602, 2 строки по 16 символов на основе контроллера HD44780. Заменить LCD-дисплей можно на любую другую модель на базе контроллера HD44780 с таким же количеством строк и символов в строке или больше. На печатной плате LCD-дисплея есть возможность задействовать подсветку экрана двумя способами — либо при помощи допаивания резистора и перемычки на самой плате экранчика или при помощи специальных выводов, обычно обозначенных как «А» и «К». Анод и катод соответственно. К ним через токоограничительный резистор подключается напряжение питания схемы 5 вольт. В данной схеме задействован первый способ, поэтому на схеме не обозначено. Вместо тактовых кнопок S1 — S5 можно использовать любые другие кнопки. Светодиод LED1 можно использовать любой подходящий по цвету или заменить его на транзистор и управлять какой-либо другой схемой в зависимости от превышения дистанции от датчика. В зависимости от примененного типа транзисторов (P-N-P или N-P-N) при превышении лимита дистанции или расстояния выход будет иметь положительное или отрицательное напряжение, то есть при высоком логическом сигнале микроконтроллера транзистор N-P-N будет открыт, а транзистор P-N-P закрыт. В прошивку микроконтроллера заложен параметр, при котором при превышении обозначенного лимита расстояния на вывод PB0 будет подаваться высокий логический уровень напряжения. В данной схеме светодиод просто сигнализирует о превышении. Данный сигнал дублируется на LCD-дисплее подчеркиванием данный о лимите дистанции. Данный параметр можно регулировать кнопками S1, S2. При нажатии происходит увеличение или уменьшение на 10 мм. Информация о дистанции на дисплей выводится также в миллиметрах. Информация о температуре окружающей среды выводится на дисплей в градусах Цельсия. К статье прилагается два варианта прошивок: 1) непрерывное измерение параметров дистанции и температуры (интервал примерно 0,2 секунды), при этом кнопки S4, S5 не задействуются, 2) при нажатии кнопок S4, S5 происходит однократный запрос к датчику на измерение температуры и расстояния. Видео к статье сделано с прошивкой номер 1. Для программирования микроконтроллера необходимо прошить фьюз биты:

Новичкам рекомендую пользоваться шестнадцатеричными значениями фьюз битов HIGH и LOW, чтобы не напортачить с расстановкой галочек. Скриншот из AVRstudio (есть отличия от дудки, sina prog и других программ для прошивки микроконтроллеров). Если Вы используете программы для прошивки микроконтроллеров AVR, в которых нет ввода параметров фьюзов, то можно воспользоваться фьюз калькуляторами для перевода галочек в шестнадцатеричную форму и наоборот.

Схема была собрана и проверена на макетной плате для Atmega8:

Конструктивно схему можно оформить, например, в виде пистолета с лазерным указателем направления ультразвукового датчика. Единственно ограничено измеряемое расстояния, при превышении которого погрешность резко возрастает. Также ограничение касается положения и размера предмета, до которого измеряется расстояние — расстояние до слишком мелких объектов или объектов находящихся под большим углом будет искажено. Идеальное сочетание достаточно большие предметы, находящиеся перпендикулярно направлению датчика. Погрешность измерений примерно соответствует заявленным производителем. Данное устройство при дальнейшем развитии можно использовать как обнаружитель препятствий, наподобие парктроника в комнатных условиях, так как на улице ультразвуковые головки данного датчика будут забиваться грязью.

Предлагайте свои идеи и варианты применения, наиболее интересные идеи в будущем могут быть реализованы.

К статье прилагаю 2 варианта HEX прошивок для МК, проект в Proteus (версия 7.7, ультразвукового датчика US-100 в базе proteus’а нет, но задействован UART отладчик), а также небольшое видео, демонстрирующее работу схемы.

Лазерный дальномер

Существует множество способов измерения расстояний – шагами, линейкой, рулеткой и пр. ХХ век добавил в средства измерений такой прибор, как лазерный дальномер. Его широко применяют военные, геодезисты для съемки местности. Лазерный дальномер был использован для замера расстояния до земного спутника – Луны.

В наши дни дальномеры, уровни, использующие лазер в своей работе, можно встретить у любой строительной бригады, занимающейся возведением зданий, и внутренней отделкой внутренней.

Принцип работы

Лазерные измерительные приборы используют в своей работе два принципа – импульсный и фазовый.

Первый дальномер состоит из двух компонент – лазера и детектора. Замерив время, которое лазерный луч затратить на движение по пути от источника до отражающего объекта, можно вычислить точное расстояние между ними. Эти устройства применяют для работы на больших расстояниях. Технология работы заключается в следующем, лазер генерирует мощный импульс и отключается. Такое свойство позволяет его скрытно использовать. Это свойство и является решающим фактором, определяющим использования этого прибора военными.

Второй тип, фазовый, работает по следующему принципу. Лазер на некоторое время включает и направляет луч на удаленный объект, у него (луча) разная моделированная частота и по изменению фазы рассчитывают расстояние до объекта. Фазовые измерительные расстояния не имеют приборов для замера отражаемого сигнала. Эти приборы эффективны на расстояниях до 1 километра и поэтому их применяют для бытовых нужд или в качестве прицельных устройств для стрелкового оружия.

Схема действия лазерного дальномера

Лазерный дальномер, применяемый в быту и на строительстве, по сути, является смесью калькулятора и рулетки. Между тем такой прибор обладает рядом неоспоримых достоинств:

    1. это устройство предоставляет возможность выполнения измерения линейных размеров (длина, высота, ширина), при этом встроенный калькулятор автоматически рассчитает периметр. Кроме того, счетное устройство поможет определить объем помещения;
    2. дальномер оснащен возможностью хранения полученных данных во внутренней памяти. Их можно использовать для проведения расчетов;
  1. прибор позволяет измерять расстояние на удаленных расстояниях при чьей-либо помощи, кстати, замеры можно выполнять и на закрытых и на открытых площадках, в разных погодных условиях.
Читать еще:  Схема подключения лампочки с 2 мест

Особенности

При работе с лазерным дальномером целесообразно учитывать некоторые особенности работы с этим устройством.

Дальномеры имеют возможность выполнять измерения на разных расстояниях и с определенной погрешностью. Так, предельное расстояние может лежать в диапазоне от 60 до 200 метров, при погрешности в 5 см. Эти данные указываются в паспорте на изделие. Большая часть моделей дальномеров работает в пределах от – 10 до + 50 градусов.

При эксплуатации прибора на улице, необходимо помнить о том, что не последнюю роль играют погодные условия. Эффективность работы может быть снижена как в плохую, так и в солнечную погоду.

При выполнении замеров необходимо устранить препятствия, которые могут возникнуть между прибором и объектом, это, может быть, листва, стекло и пр.

Практика использования лазерных приборов измерения привела к появлению определенных правил работы. Например, результат измерений будет искажен, если луч будет направлен на поверхность с высокой отражающей поверхностью (зеркало, фольга). Результат будет не совсем верный, если луч будет направлен на объект с низкой отражательной способностью (толь).

Для получения предельно точных результатов используют специальное приспособление ,обладающее отражательной поверхностью.

Во время эксплуатации необходимо постоянно следить за состоянием аккумуляторов или батареек. Слабые источники тока также отрицательно влияют результаты измерений.

При проведении измерений целесообразно использовать штатив. В таком случае точность замера будет повышена.

Порядок работы с лазерной рулеткой

Использование лазерного дальномера на практике это довольно простая задача. Для выполнения измерения достаточно установить его в исходную точку, направить на объект, до которого необходимо выполнить замер и активировать прибор. При этом надо помнить то, что для повышения точности целесообразно использовать штатив, особенно это актуально при измерении больших величин.

Порядок работы с лазерной рулеткой

То есть, проводить выполнения замеров, может, даже один человек без привлечения, помощников.

Правила пользования

При работе с такими устройствами необходимо соблюдать определенные правила. Так, категорически недопустимо направлять лазерный луч в сторону человека. Его попадание в глаза может привести к непоправимым последствиям, вплоть до потери зрения.

Проведение измерений при ярком солнце может быть затруднено из-за сложностей с видимостью лазерного маркера. В таком случае необходимо использовать специальные очки, через которые сразу будет его видно.

Лазерная съемка на местности

Во время выполнения измерения на улице, особенно на большие расстояния, необходимо применять пластину, которую называют визир.

Устройство компактного лазерного строительного дальномера

Несмотря на внешнюю простоту, лазерная линейка – это сложный инженерный прибор. Устройство лазерного дальномера состоит из следующих узлов:

Схема работы лазерного дальномера

  1. Излучатель – он генерирует луч и отправляет его в нужную точку.
  2. Отражатель – он необходим для приема, отраженного от объекта луча.
  3. Микропроцессор, для выполнения необходимых расчетов.
  4. Предустановленная программа необходимая для обработки полученных при замерах данных.
  5. Прицел, позволяющий направить луч в необходимое место.
  6. Уровень, с помощью которого прибор можно строго выставить в горизонтальной или вертикальной плоскости.

Дополнительные функции

Применяемая в составе лазерных дальномеров микроэлектроника позволяет не только выполнять прямые замеры. Многие устройства подобного типа обладают некоторыми дополнительными функции, к которым можно отнести:

    1. Функция непрерывного измерения. При работе в обычном режиме дальномер при нажатии кнопки на пульте фиксирует результат и выводит его на монитор. Но, довольно часто, возникает необходимость в проведении постоянного измерения расстояния, например, от стены до будущей перегородки. Для этого прибор переводят в режим непрерывного измерения. В таком режиме работы, устройство с некоторой частотой самостоятельно выполняет замер и показывает их результаты на монитор. Измерение проходит в реальном режиме времени.

    1. Определение наибольшего и наименьшего расстояния. Эта функция полезна при определении диагонали в комнате. Дело в том, что выполнить ее замер не так и просто при направлении лазерного луча можно промахнуться и в результате будут получены неточные результаты. После установки на приборе минимального расстояния, он будет фиксировать только те замеры, которые больше установленной.

Лазерные дальномеры для работы в помещениях или на небольших дистанциях

Все дальномеры, можно условно разделить на две большие группы. Одни применяют для внутренних работы, другие для внешних. Диапазон измерений, дальномеров, которые предназначены для внутренних измерений как правило, не превышает 100 метров.

Лазерный дальномер для работы в помещениях

Для таких работ могут быть использованы дальномеры, которые используют оба принципа действия.

Лазерные дальномеры для работы на местности

Лазерные дальномеры, которые применяют для работы на улице, позволяют показать результат при работе на 300 и более метров.

Лазерные дальномеры для работы на местности

Они оснащаются необходимыми приспособлениями, позволяющими выполнять измерения на таком расстоянии.

На что смотреть при выборе лазерного дальномера

На рынке представлено множество моделей лазерных дальномеров и зачастую потребитель может просто запутаться в обилии предложении. Поэтому потребитель, делая выбор лазерного дальномера, может руководствоваться определенными критериями, среди которых есть такие:

    1. Для работ внутри помещения достаточно прибора, который может выполнять замеры углов, и иметь функции, например, расчет периметра. Рулетки этого класса имеют небольшой диапазон измерений примерно в пределах 100 метров.
    2. Для работ на открытых пространствах применяют более дорогие модели. Они оснащены большим набором функций, в частности, может выполнять замер минимального и максимального измерения. Кроме того, их оснащают визирами, средствами подключения к компьютеру.

    1. Для работ на улице должны использоваться приборы, выполненные в защищенных корпусах и иметь кейсы, предназначенные для транспортировки.
    2. Разумеется, не последнюю роль играет стоимость изделия. Так, устройства, предназначенные для работы внутри помещений, стоит несколько дешевле, чем те, которые предназначены для работ на открытых пространствах.

Денисюк Роман Эдуардович

Факультет компьютерных информационных кехнологий и автоматики

Кафедра электронной техники

Специальность «Научные, аналитические и экологические приборы и системы»

Обоснование, разработка и исследование лазерного дальномера для систем машинного зрения роботов

Научный руководитель: к. т. н., доц. Кузнецов Дмитрий Николаевич

Лазерный дальномер своими руками

Содержание

Введение

В продаже, есть большое количество дешевых датчиков – дальномеров, в их числе ультразвуковые и инфракрасные. Все эти устройства работают хорошо, но из-за значительного веса, не подходят для летающих роботов. Миниатюрный робот вертолет, например, может нести около 100&nbspг полезной нагрузки. Это даёт возможность использовать, для поиска препятствий и предотвращения столкновений с ними, машинное зрение, используя веб-камеры (или другие миниатюрные, беспроводные камеры с подключением к компьютеру через USB). А еще лучше, установить две камеры, что обеспечит роботу, стерео зрение, таким образом, благодаря информации о глубине изображения, улучшится обход препятствий. Недостатком этой идеи является сравнительно большой вес камеры.

1. Лазерный дальномер из веб-камеры

1.1. Принцип работы

Лазерная точка проектируется на возможное препятствие, лежащие в поле зрения камеры, расстояние до этого препятствия может быть легко вычислено. Математика здесь очень простая, обработку данных лучше всего производить в компьютерных приложениях. (см. рис. 1.1)

Читать еще:  Схема подключения двухклавишного выключателя хит

Рисунок 1.1 – Принцип действия дальномера

Итак, вот как это работает. Лазерный луч проецируется на объект в поле зрения камеры. Этот луч должен быть идеально параллелен оптической оси камеры. Лазерная точка захватывается вместе с остальной сценой. Простой алгоритм ищет на изображении яркие пиксели. Предполагая, что точка лазера является яркой на фоне более тёмной обстановки (я использовал обычную лазерную указку купленную в магазине за доллар), изначально положение точки в кадре не известно. Затем нам нужно рассчитать дальность до объекта, основываясь на том, где вдоль оси Y находится лазерная точка, чем ближе она к центру изображения, тем дальше находится объект.

Как мы видим из рисунка выше, расстояние (D) может быть рассчитано по формуле:

Конечно, для решения этого уравнения, вы должны знать, h – фиксированное расстояние между лазерной указкой и камерой. Знаменатель высчитывается так:

Для калибровки системы, мы будем собирать серию измерений, где нам известно, дальность до цели, а также количество пикселей центра изображения до точки лазера.

Используя следующее уравнение, мы можем вычислить угол наклона в зависимости от значения h, а также фактическое расстояние до каждой точки.

Теперь у нас есть расчётные значения, мы можем придумать отношения, что позволяет нам рассчитывать, дальность, зная количеством пикселей от центра изображения. Можно использовать линейную зависимость.

Зная калибровочные данные, можно посчитать:

1.2. Компоненты

Для сборки дальномера требуется не так много деталей: веб-камера и лазерная указка. Для соединения лазерной указки и камеры необходимо вырезать раму из жести или фанеры:

Собранный дальномер должен выглядеть примерно следующим образом:

1.3. Программное обеспечение

Программа-обработчик написана на двух языках: Visual C&nbsp++ и Visual Basic. Вы, вероятно, подумаете, что программа на Visual Basic проще, чем на VC&nbsp++ в плане кода, но во всём есть компромисс. Код на VC&nbsp++ можно собрать бесплатно (при условии, что у вас есть Visual Studio), в то время как код VB требует приобретение программных пакетов сторонних производителей (в дополнение к Visual Studio).

Коды программ написанных на Visual Basic и Visual C&nbsp++ можно найти по ссылке: www.cxem.net

1.4. Дальнейшая работа

Одним из конкретных улучшений, которые могут быть внесены в этот дальномер, является проекция горизонтальной лазерной линии, вместо точки. Таким образом, мы сможем вычислять расстояние до цели, для каждого ряда пикселов на изображении [1].

2. Фазовый лазерный дальномер

В даном разделе описаны натуральные испытания макетного образца фазового лазерного дальномера, полученного собственными силами.

2.1. Выбор метода измерений

Принцип действия дальномера физического типа заключается в измерении времени, которое затрачивает посланный дальномером сигнал для прохождения расстояния до объекта и обратно. Способность электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта.

Существует несколько методов измерения дальности:

1. Метод триангуляции.

3. Импульсный метод.

4. Фазовый метод.

Разрабатываемый лазерный дальномер предлагается выполнить но основе фазового метода. Фазовый метод измерения расстояний основан на определении разности фаз посылаемых и принимаемых модулированных сигналов.

Режим работы устройства зависит от его температуры, с изменением которой незначительно изменяется фаза сигнала. Вследствие этого точное начало отсчета фазы определить нельзя. С этой целью фазовые измерения повторяются на эталонном отрезке (калибровочной линии) внутри прибора. Главное преимущество фазового метода измерения – более высокая точность, которая может достигать единиц миллиметров [2].

2.2. Создание макетного образца

Для проверки теоретических положений на практике, проверки устойчивости усилительных каскадов и предварительной оценки чувствительности и уровня шумов измерительного канала отраженного лазерного излучения был разработан и исследован его макетный образец.

В качестве излучателя при разработке макетного образца использован стандартный модуль красного лазерного светодиода (см. рис. 2.1) мощностью 5&nbspмВт длиной волны 650&nbspнм.

Рисунок 2.1 – Модуль лазерного светодиода

Для регистрации отраженного лазерного излучения в качестве фотоприемника использован pin-фотодиод bpw24r (см. рис. 2.2). К преимуществам данного фотодиода следует отнести высокую чувствительность в красной области видимого спектра, узкую диаграмму направленности и малую емкость р-п-перехода (5&nbspпФ). Максимальная рабочая частота 35&nbspМГц.

Рисунок 2.2 – PIN-фотодиод bpw24r

Для генерации рабочего и опорного сигналов использован модуль DDS генератора сигналов на базе микросхемы AD9850 (см. рис. 2.3). Рабочий диапазон генерируемых синусоидальных колебаний лежит в пределах от 1&nbspГц до 40&nbspМГц, шаг перестройки 1&nbspГц, относительная нестабильность частоты 10 -5 .

Рисунок 2.3 – Модуль AD9850 DDS генератора сигналов

В качестве микропроцессорного модуля управления использована стандартная плата Arduino Uno (см. рис. 2.4) на базе современного микро-контроллера ATmega328 c тактовой частотой 16&nbspМГц.

Рисунок 2.4 – Микропроцессорный модуль Arduino Uno

На рисунке 2.5 приведена схема модулятора лазерного излучения. Гармоничный сигнал частотой 10 МГц и амплитудой 0,5 В с выхода DDS генератора поступает на электронный усилитель с коэффициентом усиления по напряжению KU&nbsp=&nbsp3, построен на базе операционного усилителя DA1 AD8042. С помощью подстроечного резистора R1 обеспечивается выбор оптимального положения рабочей точки по постоянному току.

Рисунок 2.5 – Функциональная схема модулятора лазерного излучения

На рисунке 2.6 представлена схема отраженного лазерного сигнала, состоящий из фотоусилителя на DA1, смесителя и двухкаскадного избирательного усилителя на DA2 и DA3. Фотопидсилювч превращает измерительный оптический сигнал в электрический. На выходе смесителя формируется низкочастотный разностный сигнал с частотой 1 кГц, который после фильтрации двухзвенный фильтром нижних частот (R3, R4, C4, C5) поступает на избирательный усилитель с коэффициентом усиления около 10000.

Модулятор лазерного излучения и измерительного канала отражен-ного сигнала собраны на отдельных беспаечних монтажных платах (см. рис. 2.7 и 2.8). Программное обеспечение модуля разработано в среде Arduino 1.0.5. Для управления DDS генератором использована стандартная библиотека AH_AD9850.h .

Рисунок 2.6 – Функциональная схема измерительного канала отраженного лазерного излучения

В результате испытаний макетного образца получили:

– Уровень шумов на выходе избирательного усилителя составляет 5&nbspмВ;

– Уровень полезного сигнала на выходе избирательного усилителя при расстоянии до объекта 2 м составляет 200&nbspмВ;

– Самовозбуждение усилителя отсутствует;

– Внешняя засветка фотодиода на результаты измерений не влияет.

Рисунок 2.7 – Макетная плата модулятора

Рисунок 2.8 – Макетная плата измерительного канала отраженного сигнала

3. Заключение

В целом результаты макетирование подтверждают способность предложенного способа измерений, основанного на технике прямого преобразования частоты. Чувствительность измерительного канала достаточна для регистрации отраженного лазерного сигнала. Уровень выходного сигнала позволяет в дальнейшем простыми средствами определять его фазу и вычислять расстояние до объекта.

Ссылка на основную публикацию
Adblock
detector