C-triada.ru

Строительный журнал
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Эмиттер коллектор база на схеме

Как работает PNP-транзистор на примере: поясняю простым языком

Транзистор PNP для многих загадка. Но так не должно быть. Если вы хотите проектировать схемы с транзисторами, то безусловно нужно знать об этом типе транзисторов.

Пример: Хотите автоматически включить свет, когда стемнеет транзистор PNP сделает это легко для вас.

Если вы понимаете работу NPN — транзистора, то это облегчит понимание PNP- транзистора. Они работают примерно так же, с одним существенным отличием: токи в транзисторе PNP протекают в противоположных направлениях, если сравнивать с протеканием токов в транзисторе NPN.

Как работают транзисторы PNP?

Транзистор PNP имеет те же выводы, что и NPN:

Транзистор PNP «включится», когда у вас будет небольшой ток, протекающий от эмиттера к базе. Когда я говорю «включится», я имею в виду, что транзистор откроет канал между эмиттером и коллектором. И через этот канал сможет протекать уже гораздо больший ток.

Чтобы ток протекал от эмиттера к базе, вам нужно напряжение около 0,7 В. Поскольку ток идет от эмиттера к базе, база должна иметь напряжение на 0,7 В ниже , чем напряжение на эмиттере.

Установив напряжение на базе PNP-транзистора на 0,7 В ниже, чем на эмиттере, вы «включаете транзистор» и позволяете току течь от эмиттера к коллектору.

Я знаю, что это может звучать немного запутанно, поэтому читайте дальше, чтобы увидеть, как можно спроектировать схему с транзистором PNP.

Пример: транзисторная схема PNP

Давайте посмотрим, как создать простую схему с транзистором PNP. С помощью этой схемы вы можете «зажечь» светодиод, когда стемнеет.

Прежде всего, чтобы включить PNP-транзистор, нужно, чтобы напряжение на базе было ниже , чем на эмиттере. Для этого подключите эмиттер к плюсу вашего источника питания. Таким образом, вы знаете, какое у вас напряжение на эмиттере.

Шаг 2: что вы хотите контролировать

Когда транзистор включается, ток течет от эмиттера к коллектору. Итак, давайте подключим то, что мы хотим контролировать: а именно светодиод.

Поскольку у светодиода всегда должен быть последовательно установлен резистор , давайте добавим и резистор.

Шаг 3: Транзисторный вход

Для включения светодиода необходимо включить транзистор, чтобы канал от эмиттера к коллектору открылся. Чтобы включить транзистор, необходимо, чтобы напряжение на базе было на 0,7 В ниже, чем на эмиттере, что составляет 9 В — 0,7 В = 8,3 В.

Например, теперь вы можете включить светодиод, когда стемнеет, используя фоторезистор и стандартный резистор, настроенный в качестве делителя напряжения.

Напряжение на базе не будет вести себя точно так, как говорит формула делителя напряжения. Это потому, что транзистор тоже влияет на напряжение.

Но в целом, когда значение сопротивления фоторезистора велико (нет света), напряжение будет близко к 8,3 В, и транзистор включен (что включает светодиод). Когда значение фоторезистора низкое (много света присутствует), напряжение будет близко к 9 В и отключит транзистор (который выключит светодиод).

PNP-транзистор: схема подключения. Какая разница между PNP и NPN-транзисторами?

PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.

Конструкция прибора

Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.

Стрелка определяет эмиттер и общепринятое направление его тока («внутрь» для транзистора PNP).

PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.

Основные отличия двух типов биполярных транзисторов

Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.

Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.

Рассмотрим отличия PNP-типа на схеме включения с общей базой

Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.

По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.

Читать еще:  Электросамокат своими руками чертежи

Отличия PNP-типа на примере схемы включения с общим эмиттером

В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.

Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.

В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.

В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.

PNP-транзистор: подключение источников напряжения

Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.

Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.

Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.

Работа PNP-транзисторного каскада

Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.

Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.

Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.

Характеристики транзистора

Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.

Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.

Транзисторные пары в усилительных каскадах

Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.

Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.

Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.

Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.

Транзисторные пары в схемах управления электродвигателями

Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.

H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.

Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.

Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.

Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.

Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.

Читать еще:  При какой температуре выпаивать микросхемы феном

Определение типа транзисторов

Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.

Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:

1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.

2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.

3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.

Значения сопротивлений переходов транзисторов обоих типов

Транзистор

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Читать еще:  Однофазный двигатель с пусковой обмоткой схема подключения

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Как определить выводы транзистора

Биполярный транзистор – полупроводниковый радиоэлемент, применяемый во всех электронных компонентах современных аппаратов и приборов. Несмотря на симметричность этого прибора по полярности (p-n-p или n-p-n), важно определить выводы транзистора от его трех зон, которые называются «база», «эмиттер» и «коллектор». Это связано с тем, что площадь соприкосновения базы и коллектора намного больше площади контакта базы и эмиттера. Поэтому при движении зарядов от эмиттера к коллектору они все ловятся коллектором, при обратном процессе эмиттер не способен поймать все заряды. Существует несколько способов определения структуры радиодетали (p-n-p или n-p-n) и порядка расположения ее зон.

Определение выводов от базы, эмиттера и коллектора полупроводникового транзистора – простейший вариант

Наиболее простым способом решения проблемы является использование даташита – бесплатного каталога электронных компонентов. Для этого заходим в поисковую строку, вводим цифры и буквы, написанные на детали, а затем – слово «даташит». В этом электронном документе вы найдете все данные на транзистор – обозначения выводов, эксплуатационные режимы, схему подключения.

Решаем задачу с помощью мультиметра

Если выйти в интернет не представляется возможности, то вторым вариантом, как определить цоколевку транзистора (расположение выводов), является использование мультиметра или омметра. Порядок действия следующий:

  • определить структуру транзистора (p-n-p или n-p-n);
  • узнать, где у транзистора располагается база;
  • определить места расположения коллектора и эмиттера.

Как определить структуру транзистора — видео

На омметре устанавливают предел измерений – х10. Щупы по очереди подсоединяют к паре выводов, перемещаясь по кругу. При получении малого сопротивления – сотни Ом – щуп «-» переносят на оставшийся свободный третий вывод. Если прибор также покажет небольшое сопротивление, то это означает, что щуп «+» подключен к базе, а структура полупроводника – n-p-n. Если сопротивление большое, то щупы меняют местами. Сопротивление должно резко уменьшиться. Если это произошло, то можно с уверенностью сказать, что вывод, к которому мы подсоединили «-», является базой, а структура радиодетали – p-n-p. Если ожидаемого снижения сопротивления не произошло, то полупроводник, скорее всего, находится в нерабочем состоянии.

После определения базы определяем расположение коллектора и эмиттера. Для решения этой задачи нам понадобится постоянный резистор сопротивлением 30-50 кОм. Щупы в произвольном порядке подключаем к двум оставшимся выводам.

  • Предполагаем, что для n-p-n полупроводника коллектором является контакт, к которому мы подсоединили плюсовой щуп, а для n-p-n модели – минусовой.
  • К выводам базы и предполагаемого коллектора подсоединяют постоянный резистор. Отсчитывают показания прибора.
  • Меняют полярность подсоединения измерительного прибора. Теперь «под подозрение», в том, что он коллектор, попадает второй неопознанный вывод транзистора. Между ним и базой устанавливаем постоянный резистор. Производят измерения.
  • Коллектором является тот контакт, на котором сопротивление между ним и базой меньше. А эмиттером, соответственно, является оставшийся вывод.

Плюсовым щупом омметра, который входит в состав мультиметра, обычно служит общий вывод прибора.

Ссылка на основную публикацию
Adblock
detector
×
×